ترغب بنشر مسار تعليمي؟ اضغط هنا

A Statistical Comparative Planetology Approach to Maximize the Scientific Return of Future Exoplanet Characterization Efforts

96   0   0.0 ( 0 )
 نشر من قبل Jade Checlair
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Provided that sufficient resources are deployed, we can look forward to an extraordinary future in which we will characterize potentially habitable planets. Until now, we have had to base interpretations of observations on habitability hypotheses that have remained untested. To test these theories observationally, we propose a statistical comparative planetology approach to questions of planetary habitability. The key objective of this approach will be to make quick and cheap measurements of critical planetary characteristics on a large sample of exoplanets, exploiting statistical marginalization to answer broad habitability questions. This relaxes the requirement of obtaining multiple types of data for a given planet, as it allows us to test a given hypothesis from only one type of measurement using the power of an ensemble. This approach contrasts with a systems science approach, where a few planets would be extensively studied with many types of measurements. A systems science approach is associated with a number of difficulties which may limit overall scientific return, including: the limited spectral coverage and noise of instruments, the diversity of exoplanets, and the extensive list of potential false negatives and false positives. A statistical approach could also be complementary to a systems science framework by providing context to interpret extensive measurements on planets of particular interest. We strongly recommend future missions with a focus on exoplanet characterization, and with the capability to study large numbers of planets in a homogenous way, rather than exclusively small, intense studies directed at a small sample of planets.

قيم البحث

اقرأ أيضاً

In this outlook we describe what could be the next steps of the direct characterization of habitable exoplanets after first the medium and large mission projects and investigate the benefits of the spectroscopic and direct imaging approaches. We show that after third and fourth generation missions foreseeable for the next 100 years, we will face a very long era before being able to see directly the morphology of extrasolar organisms.
We present a bibliographic analysis of Chandra, Hubble, and Spitzer publications. We find (a) archival data are used in >60% of the publication output and (b) archives for these missions enable a much broader set of institutions and countries to scie ntifically use data from these missions. Specifically, we find that authors from institutions that have published few papers from a given mission publish 2/3 archival publications, while those with many publications typically have 1/3 archival publications. We also show that countries with lower GDP per capita overwhelmingly produce archival publications, while countries with higher GDP per capital produce guest observer and archival publications in equal amounts. We argue that robust archives are thus not only critical for the scientific productivity of mission data, but also the scientific accessibility of mission data. We argue that the astronomical community should support archives to maximize the overall scientific societal impact of astronomy, and represent an excellent investment in astronomys future.
The Next Generation Virgo Cluster Survey is a 104 square degree survey of the Virgo Cluster, carried out using the MegaPrime camera of the Canada-France-Hawaii telescope, from semesters 2009A-2012A. The survey will provide coverage of this nearby den se environment in the universe to unprecedented depth, providing profound insights into galaxy formation and evolution, including definitive measurements of the properties of galaxies in a dense environment in the local universe, such as the luminosity function. The limiting magnitude of the survey is g_AB = 25.7 (10 sigma point source), and the 2 sigma surface brightness limit is g_AB ~ 29 mag arcsec^-2. The data volume of the survey (approximately 50 terabytes of images), while large by contemporary astronomical standards, is not intractable. This renders the survey amenable to the methods of astroinformatics. The enormous dynamic range of objects, from the giant elliptical galaxy M87 at M(B) = -21.6, to the faintest dwarf ellipticals at M(B) ~ -6, combined with photometry in 5 broad bands (u* g r i z), and unprecedented depth revealing many previously unseen structures, creates new challenges in object detection and classification. We present results from ongoing work on the survey, including photometric redshifts, Virgo cluster membership, and the implementation of fast data mining algorithms on the infrastructure of the Canadian Astronomy Data Centre, as part of the Canadian Advanced Network for Astronomical Research (CANFAR).
Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future directions in life detection, which permits the possibility of generalizing our search strategy beyond biosignatures of known life. The Bayesian methodology provides a language to define quantitatively the conditional probabilities and confidence levels of future life detection and, importantly, may constrain the prior probability of life with or without positive detection. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from stellar and planetary context, the contingencies of evolutionary history and the universalities of physics and chemistry. We discuss how the Bayesian framework can guide our search strategies, including determining observational wavelengths or deciding between targeted searches or larger, lower resolution surveys. Our goal is to provide a quantitative framework not entrained to specific definitions of life or its signatures, which integrates the diverse disciplinary perspectives necessary to confidently detect alien life.
Modeling the outflow of planetary atmospheres is important for understanding the evolution of exoplanet systems and for interpreting their observations. Modern theoretical models of exoplanet atmospheres become increasingly detailed and multicomponen t, and this makes difficulties for engaging new researchers in the scope. Here, for the first time, we present the results of testing the gas-dynamic method incorporated in our aeronomic model, which has been proposed earlier. Undertaken tests support the correctness of the method and validate its applicability. For modeling the planetary wind, we propose a new hydrodynamic model equipped with a phenomenological function of heating by stellar UV radiation. The general flow in this model well agrees with results obtained in more detailed aeronomic models. The proposed model can be used for both methodical purposes and testing the gas-dynamic modules of self-consistent chemical-dynamic models of the planetary wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا