ترغب بنشر مسار تعليمي؟ اضغط هنا

The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

184   0   0.0 ( 0 )
 نشر من قبل Enrico Camporeale
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrico Camporeale




اسأل ChatGPT حول البحث

The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.



قيم البحث

اقرأ أيضاً

The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms; forecasts for each active region on the solar disk over the next 24 hours, and full-disk forecasts for the next four days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results, and forecasting skill decreasing over longer forecast lead times.
Space weather indices are commonly used to drive operational forecasts of various geospace systems, including the thermosphere for mass density and satellite drag. The drivers serve as proxies for various processes that cause energy flow and depositi on in the geospace system. Forecasts of neutral mass density is a major uncertainty in operational orbit prediction and collision avoidance for objects in low earth orbit (LEO). For the strongly driven system, accuracy of space weather driver forecasts is crucial for operations. The High Accuracy Satellite Drag Model (HASDM) currently employed by the United States Air Force in an operational environment is driven by four (4) solar and two (2) geomagnetic proxies. Space Environment Technologies (SET) is contracted by the space command to provide forecasts for the drivers. This work performs a comprehensive assessment for the performance of the driver forecast models. The goal is to provide a benchmark for future improvements of the forecast models. Using an archived data set spanning six (6) years and 15,000 forecasts across solar cycle 24, we quantify the temporal statistics of the model performance.
This paper reports the results of an experiment in high energy physics: using the power of the crowd to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experimen t took the form of a machine learning challenge organized in 2018: the Tracking Machine Learning Challenge (TrackML). Its results were discussed at the competition session at the Neural Information Processing Systems conference (NeurIPS 2018). Given 100.000 points, the participants had to connect them into about 10.000 arcs of circles, following the trajectory of particles issued from very high energy proton collisions. The competition was difficult with a dozen front-runners well ahead of a pack. The single competition score is shown to be accurate and effective in selecting the best algorithms from the domain point of view. The competition has exposed a diversity of approaches, with various roles for Machine Learning, a number of which are discussed in the document
149 - Eve Armstrong 2019
Despite a previous description of his state as a stable fixed point, just past midnight this morning Mr. Boddy was murdered again. In fact, over 70 years Mr. Boddy has been reported murdered $10^6$ times, while there exist no documented attempts at i ntervention. Using variational data assimilation, we train a model of Mr. Boddys dynamics on the time series of observed murders, to forecast future murders. The parameters to be estimated include instrument, location, and murderer. We find that a successful estimation requires three additional elements. First, to minimize the effects of selection bias, generous ranges are placed on parameter searches, permitting values such as the Cliff, the Poisoned Apple, and the Wife. Second, motive, which was not considered relevant to previous murders, is added as a parameter. Third, Mr. Boddys little-known asthmatic condition is considered as an alternative cause of death. Following this mornings event, the next local murder is forecast for 17:19:03 EDT this afternoon, with a standard deviation of seven hours, at The Kitchen at 4330 Katonah Avenue, Bronx, NY, 10470, with either the Lead Pipe or the Lead Bust of Washington Irving. The motive is: Case of Mistaken Identity, and there was no convergence upon a murderer. Testing of the procedures predictive power will involve catching the D train to 205th Street and a few transfers over to Katonah Avenue, and sitting around waiting with our eyes peeled. We discuss the problem of identifying a global solution - that is, the best reason for murder on a landscape riddled with pretty-decent reasons. We also discuss the procedures assumption of Gaussian-distributed errors, which will under-predict rare events. This under-representation of highly improbable events may be offset by the fact that the training data, after all, consists of multiple murders of a single person.
The available magnetic field data from the terrestrial magnetosphere, solar wind and planetary magnetospheres exceeds over $10^6$ hours. Identifying plasma waves in these large data sets is a time consuming and tedious process. In this Paper, we prop ose a solution to this problem. We demonstrate how Self-Organizing Maps can be used for rapid data reduction and identification of plasma waves in large data sets. We use 72,000 fluxgate and 110,000 search coil magnetic field power spectra from the Magnetospheric Multiscale Mission (MMS$_1$) and show how the Self-Organizing Map sorts the power spectra into groups based on their shape. Organizing the data in this way makes it very straightforward to identify power spectra with similar properties and therefore this technique greatly reduces the need for manual inspection of the data. We suggest that Self-Organizing Maps offer a time effective and robust technique, which can significantly accelerate the processing of magnetic field data and discovery of new wave forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا