ﻻ يوجد ملخص باللغة العربية
We briefly review the general insight into the indirect searches of dark matter. We discuss the primary equation in a three-level multimessenger approach (gamma rays, neutrinos and antiprotons), and we introduce the reader to the main topics and related uncertainties (e.g. dark matter density distribution, cosmic rays, particle physics). As an application of the general concept, we focus on the multi-TeV dark matter candidate among other weak interactive massive particles. We present the state-of-the-art on this sub-field, and we discuss open questions and experimental limitations.
It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple
This is the mini-review on Dark Matter in the 2012 edition of the Particle Data Groups Review of Particle Properties. After briefly summarizing the arguments in favor of the existence of Dark Matter, we list possible candidates, ranging in mass from
Recent rapid progress in multimessenger observations of neutron stars (NSs) offers great potential to constrain the properties of strongly interacting matter under the most extreme conditions. In order to fully exploit the current observational input
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a
Well-motivated electroweak dark matter is often hosted by an extended electroweak sector which also contains new lepton pairs with masses near the weak scale. In this paper, we explore such electroweak dark matter via combining dark matter direct det