ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3 cavity prototypes of RADES, an axion detector using microwave filters at CAST

73   0   0.0 ( 0 )
 نشر من قبل Babette D\\\"obrich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes were designed and built in 2018. The aim of the new designs is to find and test the best cavity geometry in order to scale up in volume and to introduce an effective tuning mechanism. Our results demonstrate the promising potential of this type of filter to reach QCD axion sensitivity at X-Band frequencies.

قيم البحث

اقرأ أيضاً

Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.
We report on the construction, operation experience, and preliminary background measurements of an InGrid detector, i.e. a MicroMegas detector with CMOS pixel readout. The detector was mounted in the focal plane of the Abrixas X-Ray telescope at the CAST experiment at CERN. The detector is sensitive to soft X-Rays in a broad energy range (0.3--10 keV) and thus enables the search for solar chameleons. Smooth detector operation during CAST data taking in autumn 2014 has been achieved. Preliminary analysis of background data indicates a background rate of $1-5times 10^{-5},mathrm{keV}^{-1}mathrm{cm}^{-2}mathrm{s}^{-1}$ above 2 keV and $sim 3times 10^{-4},mathrm{keV}^{-1}mathrm{cm}^{-2}mathrm{s}^{-1}$ around 1 keV. An expected limit of $beta_gamma lesssim 5times 10^{10}$ on the chameleon photon coupling is estimated in case of absence of an excess in solar tracking data. We also discuss the prospects for future operation of the detector.
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the $5 - 25$ GHz range ($sim20-100: mu$eV). The platform is small but fl exible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
A high-quality factor microwave resonator in the presence of a strong magnetic field could have a wide range of applications, such as axion dark matter searches where the two aspects must coexist to enhance the experimental sensitivity. We introduce a polygon-shaped cavity design with bi-axially textured YBa$_{2}$Cu$_{3}$O$_{7-x}$ superconducting tapes covering the entire inner wall. Using a 12-sided polygon cavity, we obtain substantially improved quality factors of the TM$_{010}$ mode at 6.9 GHz at 4 K with respect to a copper cavity and observe no considerable degradation in the presence of magnetic fields up to 8 T. This corresponds to the first demonstration of practical applications of superconducting radio frequency technology for axion and other research areas requiring low loss in a strong magnetic field. We address the importance of the successful demonstration and discuss further improvements.
We demonstrate a superconducting (SC) microwave (mw) cavity that can accelerate the dark matter search by maintaining superconductivity in a high DC magnetic field. We used high-temperature superconductor (HTSC) yttrium barium copper oxide (YBCO) wit h a phase transition temperature of 90K to prevent SC failure by the magnetic field. Since the direct deposition of HTSC film on the metallic mw cavity is very difficult, we used the commercial HTSC tapes which are flexible metallic tapes coated with HTSC thin films. We fabricated resonating cavity ($f_{TM010}$ ~ 6.89 GHz) with a third of the inner wall covered by YBCO tapes and measured the quality factor (Q factor) at 4K temperature, varying the DC magnetic field from 0 to 8 tesla. There was no significant quality (Q) factor drop and the superconductivity was well maintained even in 8 tesla magnetic field. This implies the possibility of good performance of HTSC mw resonant cavity under a strong magnetic field for axion detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا