ﻻ يوجد ملخص باللغة العربية
The study of local models using finite shared randomness originates from the consideration about the cost of classically simulating entanglement in composite quantum systems. We construct explicitly two families of local-hidden-state (LHS) models for T-states, by mapping the problem to the Werner state. The continuous decreasing of shared randomness along with entanglement, as the anisotropy increases, can be observed in the one from the most economical model for the Werner state. The construction of the one for separable states shows that the separable boundary of T-states can be generated from the one of the Werner state, and the cost is 2 classical bits.
For a bipartite entangled state shared by two observers, Alice and Bob, Alice can affect the post-measured states left to Bob by choosing different measurements on her half. Alice can convince Bob that she has such an ability if and only if the unnor
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality, and a central question is to determine the precis
Two processors output correlated sequences using the help of a coordinator with whom they individually share independent randomness. For the case of unlimited shared randomness, we characterize the rate of communication required from the coordinator
We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quan