ﻻ يوجد ملخص باللغة العربية
Quantum entanglement, as the strictly non-classical phenomena, is the kernel of quantum computing and quantum simulation, and has been widely applied ranging from fundamental tests of quantum physics to quantum information processing. The decoherence of quantum states restricts the capability of building quantum simulators and quantum computers in a scalable fashion. Meanwhile, the topological phase is found inherently capable of protecting physical fields from unavoidable fabrication-induced disorder, which inspires the potential application of topological protection on quantum states. Here, we present the first experimental demonstration of topologically protected quantum polarization entangled states on a photonic chip. The process tomography shows that quantum entanglement can be well preserved by the boundary states even when the chip material substantially introduces relative polarization rotation in phase space. Our work links topology, material and quantum physics, opening the door to wide applications of topological enhancement in genuine quantum regime.
Exploring the properties and applications of topological quantum states is essential to better understand topological matter. Here, we theoretically study a quasi-one-dimensional topological atom array. In the low-energy regime, the atom array is equ
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape spe
Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic struct
We propose a scheme to dynamically realize a quantum memory based on the toric code. The code is generated from qubit systems with typical two-body interactions (Ising, XY, Heisenberg) using periodic, NMR-like, pulse sequences. It allows one to encod
The measure of quantum entanglement is determined for any dimer, either ferromagnetic or antiferromagnetic, spin-1/2 Heisenberg systems in the presence of external magnetic field. The physical quantity proposed as a measure of thermal quantum entangl