ﻻ يوجد ملخص باللغة العربية
We analyze the capacity of future $Z$-factories to search for heavy neutrinos with their mass from 10 to 85 GeV. The heavy neutrinos $N$ are considered to be produced via the process $e^+e^-to Zto u N$ and to decay into an electron or muon and two jets. By means of Monte Carlo simulation of such signal events and the Standard Model background events, we obtain the upper bounds on the cross sections $sigma(e^+e^-to u Nto uell jj)$ given by the $Z$-factories with integrated luminosities of 0.1, 1 and 10 ab$^{-1}$ if no signal events are observed. Under the assumption of a minimal extension of the Standard Model in the neutrino sector, we also present the corresponding constraints on the mixing parameters of the heavy neutrinos with the Standard Model leptons, and find they are improved by at least one order compared to current experimental constraints.
$bto stau^+tau^-$ measurements are highly motivated for addressing lepton-flavor-universality (LFU)-violating puzzles such as $R_{K^{(ast)}}$ anomalies. The anomalies of $R_{D^{(*)}}$ and $R_{J/psi}$ further strengthen their necessity and importance,
We discuss the future prospects of heavy neutrino searches at next generation lepton colliders. In particular, we focus on the planned electron-positron colliders, operating in two different beam modes, namely, $e^+e^-$ and $e^-e^-$. In the $e^+e^-$
Collider searches for new vector-like particles such as Z have mostly been pursued by looking for a peak in the invariant mass spectrum of the decay products. However off-shell Z exchange may leave an imprint on other kinematic distributions, leading
In this work, we study the implication of Higgs precision measurements at future Higgs factories on the MSSM parameter space, focusing on the dominant stop sector contributions. We perform a multi-variable fit to both the signal strength for various
A variety of new physics scenarios allow for neutrinos to up-scatter into a heavy neutral lepton state. For a range of couplings and neutrino energies, the heavy neutrino may travel some distance before decaying to visible final states. When both the