ﻻ يوجد ملخص باللغة العربية
Recently, leveraging on the development of end-to-end convolutional neural networks (CNNs), deep stereo matching networks have achieved remarkable performance far exceeding traditional approaches. However, state-of-the-art stereo frameworks still have difficulties at finding correct correspondences in texture-less regions, detailed structures, small objects and near boundaries, which could be alleviated by geometric clues such as edge contours and corresponding constraints. To improve the quality of disparity estimates in these challenging areas, we propose an effective multi-task learning network, EdgeStereo, composed of a disparity estimation branch and an edge detection branch, which enables end-to-end predictions of both disparity map and edge map. To effectively incorporate edge cues, we propose the edge-aware smoothness loss and edge feature embedding for inter-task interactions. It is demonstrated that based on our unified model, edge detection task and stereo matching task can promote each other. In addition, we design a compact module called residual pyramid to replace the commonly-used multi-stage cascaded structures or 3-D convolution based regularization modules in current stereo matching networks. By the time of the paper submission, EdgeStereo achieves state-of-art performance on the FlyingThings3D dataset, KITTI 2012 and KITTI 2015 stereo benchmarks, outperforming other published stereo matching methods by a noteworthy margin. EdgeStereo also achieves comparable generalization performance for disparity estimation because of the incorporation of edge cues.
Recent convolutional neural networks, especially end-to-end disparity estimation models, achieve remarkable performance on stereo matching task. However, existed methods, even with the complicated cascade structure, may fail in the regions of non-tex
Being a crucial task of autonomous driving, Stereo matching has made great progress in recent years. Existing stereo matching methods estimate disparity instead of depth. They treat the disparity errors as the evaluation metric of the depth estimatio
Stereo matching is essential for robot navigation. However, the accuracy of current widely used traditional methods is low, while methods based on CNN need expensive computational cost and running time. This is because different cost volumes play a c
Dense stereo matching with deep neural networks is of great interest to the research community. Existing stereo matching networks typically use slow and computationally expensive 3D convolutions to improve the performance, which is not friendly to re
In this paper, we propose a unified method to jointly learn optical flow and stereo matching. Our first intuition is stereo matching can be modeled as a special case of optical flow, and we can leverage 3D geometry behind stereoscopic videos to guide