ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a time projection chamber with a sheet-resistor field cage

87   0   0.0 ( 0 )
 نشر من قبل Miuchi Kentaro
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new-concept time projection chamber (TPC) using a commercial resistive sheet, sheet-resistor micro-TPC SR-microPIC, was developed and its performance was measured. SR-microTPC has the potential to create a more uniform electric field than conventional TPCs with resistor-chains owing to its continuous sheet resistivity, and its production would be easier than that of conventional TPCs. The material used in this study, Achilles-Vynilas, was found to be thin, transparent, and low-radioactive. The performance test with cosmic muons showed very promising results, including the demonstration of a good tracking-performance. This type of TPC field cage can offer an alternative for the widely used conventional field cages

قيم البحث

اقرأ أيضاً

nEXO is a proposed tonne-scale neutrinoless double beta decay ($0 ubetabeta$) experiment using liquid ${}^{136}Xe$ (LXe) in a Time Projection Chamber (TPC) to read out ionization and scintillation signals. Between the field cage and the LXe vessel, a layer of LXe (skin LXe) is present, where no ionization signal is collected. Only scintillation photons are detected, owing to the lack of optical barrier around the field cage. In this work, we show that the light originating in the skin LXe region can be used to improve background discrimination by 5% over previous published estimates. This improvement comes from two elements. First, a fraction of the $gamma$-ray background is removed by identifying light from interactions with an energy deposition in the skin LXe. Second, background from ${}^{222}Rn$ dissolved in the skin LXe can be efficiently rejected by tagging the $alpha$ decay in the ${}^{214}Bi-{}^{214}Po$ chain in the skin LXe.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has be en constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.
In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negati ve kaons interactions in nuclei. Such innovative detector will equip the inner part of the experiment in order to perfom a better reconstruction of the primary vertex and the secondary particles tracking. A 10x10 cm2 prototype with a drift gap up to 15 cm was realized and succesfully tested at the {pi} M1 beam facility of the Paul Scherrer Institut (PSI) with low momentum hadrons. The measurements of the detector efficiency and spatial resolution have been performed. The results as a function of the gas gain, drift field, front-end electronic threshold and particle momentum are reported and discussed.
402 - S.X. Oda , H. Hamagaki , K. Ozawa 2006
We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with 3 kinds of gases (Ar(90%)-CH4(10%), Ar(70%)-C2H6( 30%) and CF4). Detection efficiency of 99%, and spatial resolution of 79 $mu$m in the pad-row direction and 313 $mu$m in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا