ﻻ يوجد ملخص باللغة العربية
We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky in the presence of a major source of interference, the existence of which makes the problem non-trivial. First, we consider utilizing a single UAV, for which we develop a theoretical framework to determine its optimal position aiming to maximize the SIR of the system. To this end, we investigate the problem for three practical scenarios, in which the position of the UAV is: (i) vertically fixed, horizontally adjustable; (ii) horizontally fixed, vertically adjustable; (iii) both horizontally and vertically adjustable. Afterward, we consider employing multiple UAVs, for which we propose a cost-effective method that simultaneously minimizes the number of required UAVs and determines their optimal positions so as to guarantee a certain SIR of the system. We further develop a distributed placement algorithm, which can increase the SIR of the system given an arbitrary number of UAVs. Numerical simulations are provided to evaluate the performance of our proposed methods.
The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec
We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky
An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an al
We propose a cell planning scheme to maximize the resource efficiency of a wireless communication network while considering quality-of-service requirements imposed by different mobile services. In dense and heterogeneous cellular 5G networks, the ava