ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference Avoidance Position Planning in UAV-assisted Wireless Communication

164   0   0.0 ( 0 )
 نشر من قبل Seyyedali Hosseinalipour
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky in the presence of a major source of interference, the existence of which makes the problem non-trivial. First, we consider utilizing a single UAV, for which we develop a theoretical framework to determine its optimal position aiming to maximize the SIR of the system. To this end, we investigate the problem for three practical scenarios, in which the position of the UAV is: (i) vertically fixed, horizontally adjustable; (ii) horizontally fixed, vertically adjustable; (iii) both horizontally and vertically adjustable. Afterward, we consider employing multiple UAVs, for which we propose a cost-effective method that simultaneously minimizes the number of required UAVs and determines their optimal positions so as to guarantee a certain SIR of the system. We further develop a distributed placement algorithm, which can increase the SIR of the system given an arbitrary number of UAVs. Numerical simulations are provided to evaluate the performance of our proposed methods.



قيم البحث

اقرأ أيضاً

The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec hanism aiming to improve the data rate between a base station (BS) and a user equipment through deploying multiple relaying UAVs. We consider the effect of interference, which is incurred by the nodes of another established communication network. Our primary goal is to design the 3D trajectories and power allocation for the UAVs to maximize the data flow while the interference constraint is met. The UAVs can reconfigure their locations to evade the unintended/intended interference caused by reckless/smart interferers. We also consider the scenario in which smart jammers chase the UAVs to degrade the communication quality. In this case, we investigate the problem from the perspective of both UAV network and smart jammers. An alternating-maximization approach is proposed to address the joint 3D trajectory design and power allocation problem. We handle the 3D trajectory design by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Finally, we demonstrate the efficacy of our proposed method through simulations.
We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky in the presence of interference in the environment, the existence of which makes the problem non-trivial and our methodology different from the current art. We study the optimal position planning, which aims to maximize the (average) signal-to-interference-ratio (SIR) of the system, in the presence of: i) one major source of interference, ii) stochastic interference. For each scenario, we first consider utilizing a single UAV in the dual-hop relay mode and determine its optimal position. Afterward, multiple UAVs in the multi-hop relay mode are considered, for which we investigate two novel problems concerned with determining the optimal number of required UAVs and developing an optimal fully distributed position alignment method. Subsequently, we propose a cost-effective method that simultaneously minimizes the number of UAVs and determines their optimal positions to guarantee a certain (average) SIR of the system. Alternatively, for a given number of UAVs, we develop a fully distributed placement algorithm along with its performance guarantee. Numerical simulations are provided to evaluate the performance of our proposed methods.
An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics of user distribution pose major challenges in the practical deployment of IAB networks. To tackle these problems, we leverage the flying capabilities of unmanned aerial vehicles (UAVs) as hovering IAB-nodes and propose an interference management algorithm to maximize the overall sum rate of the IAB network. In particular, we jointly optimize the user and base station associations, the downlink power allocations for access and backhaul transmissions, and the spatial configurations of UAVs. We consider two spatial configuration modes of UAVs: distributed UAVs and drone antenna array (DAA), and show how they are intertwined with the spatial distribution of ground users. Our numerical results show that the proposed algorithm achieves an average of $2.9times$ and $6.7times$ gains in the received downlink signal-to-interference-plus-noise ratio (SINR) and overall network sum rate, respectively. Finally, the numerical results reveal that UAVs cannot only be used for coverage improvement but also for capacity boosting in IAB cellular networks.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an al ready existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
We propose a cell planning scheme to maximize the resource efficiency of a wireless communication network while considering quality-of-service requirements imposed by different mobile services. In dense and heterogeneous cellular 5G networks, the ava ilable time-frequency resources are orthogonally partitioned among different slices, which are serviced by the cells. The proposed scheme achieves a joint optimization of the resource distribution between network slices, the allocation of cells to operate on different slices, and the allocation of users to cells. Since the original problem formulation is computationally intractable, we propose a convex inner approximation. Simulations show that the proposed approach optimizes the resource efficiency and enables a service-centric network design paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا