ترغب بنشر مسار تعليمي؟ اضغط هنا

Image Super-Resolution by Neural Texture Transfer

144   0   0.0 ( 0 )
 نشر من قبل Zhifei Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the significant information loss in low-resolution (LR) images, it has become extremely challenging to further advance the state-of-the-art of single image super-resolution (SISR). Reference-based super-resolution (RefSR), on the other hand, has proven to be promising in recovering high-resolution (HR) details when a reference (Ref) image with similar content as that of the LR input is given. However, the quality of RefSR can degrade severely when Ref is less similar. This paper aims to unleash the potential of RefSR by leveraging more texture details from Ref images with stronger robustness even when irrelevant Ref images are provided. Inspired by the recent work on image stylization, we formulate the RefSR problem as neural texture transfer. We design an end-to-end deep model which enriches HR details by adaptively transferring the texture from Ref images according to their textural similarity. Instead of matching content in the raw pixel space as done by previous methods, our key contribution is a multi-level matching conducted in the neural space. This matching scheme facilitates multi-scale neural transfer that allows the model to benefit more from those semantically related Ref patches, and gracefully degrade to SISR performance on the least relevant Ref inputs. We build a benchmark dataset for the general research of RefSR, which contains Ref images paired with LR inputs with varying levels of similarity. Both quantitative and qualitative evaluations demonstrate the superiority of our method over state-of-the-art.

قيم البحث

اقرأ أيضاً

With the recent advancement in deep learning, we have witnessed a great progress in single image super-resolution. However, due to the significant information loss of the image downscaling process, it has become extremely challenging to further advan ce the state-of-the-art, especially for large upscaling factors. This paper explores a new research direction in super resolution, called reference-conditioned super-resolution, in which a reference image containing desired high-resolution texture details is provided besides the low-resolution image. We focus on transferring the high-resolution texture from reference images to the super-resolution process without the constraint of content similarity between reference and target images, which is a key difference from previous example-based methods. Inspired by recent work on image stylization, we address the problem via neural texture transfer. We design an end-to-end trainable deep model which generates detail enriched results by adaptively fusing the content from the low-resolution image with the texture patterns from the reference image. We create a benchmark dataset for the general research of reference-based super-resolution, which contains reference images paired with low-resolution inputs with varying degrees of similarity. Both objective and subjective evaluations demonstrate the great potential of using reference images as well as the superiority of our results over other state-of-the-art methods.
With the development of the super-resolution convolutional neural network (SRCNN), deep learning technique has been widely applied in the field of image super-resolution. Previous works mainly focus on optimizing the structure of SRCNN, which have be en achieved well performance in speed and restoration quality for image super-resolution. However, most of these approaches only consider a specific scale image during the training process, while ignoring the relationship between different scales of images. Motivated by this concern, in this paper, we propose a cascaded convolution neural network for image super-resolution (CSRCNN), which includes three cascaded Fast SRCNNs and each Fast SRCNN can process a specific scale image. Images of different scales can be trained simultaneously and the learned network can make full use of the information resided in different scales of images. Extensive experiments show that our network can achieve well performance for image SR.
We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single des ign. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.
Computed Tomography (CT) imaging technique is widely used in geological exploration, medical diagnosis and other fields. In practice, however, the resolution of CT image is usually limited by scanning devices and great expense. Super resolution (SR) methods based on deep learning have achieved surprising performance in two-dimensional (2D) images. Unfortunately, there are few effective SR algorithms for three-dimensional (3D) images. In this paper, we proposed a novel network named as three-dimensional super resolution convolutional neural network (3DSRCNN) to realize voxel super resolution for CT images. To solve the practical problems in training process such as slow convergence of network training, insufficient memory, etc., we utilized adjustable learning rate, residual-learning, gradient clipping, momentum stochastic gradient descent (SGD) strategies to optimize training procedure. In addition, we have explored the empirical guidelines to set appropriate number of layers of network and how to use residual learning strategy. Additionally, previous learning-based algorithms need to separately train for different scale factors for reconstruction, yet our single model can complete the multi-scale SR. At last, our method has better performance in terms of PSNR, SSIM and efficiency compared with conventional methods.
Image super-resolution is a process to enhance image resolution. It is widely used in medical imaging, satellite imaging, target recognition, etc. In this paper, we conduct continuous modeling and assume that the unknown image intensity function is d efined on a continuous domain and belongs to a space with a redundant basis. We propose a new iterative model for single image super-resolution based on an observation: an image is consisted of smooth components and non-smooth components, and we use two classes of approximated Heaviside functions (AHFs) to represent them respectively. Due to sparsity of the non-smooth components, a $L_{1}$ model is employed. In addition, we apply the proposed iterative model to image patches to reduce computation and storage. Comparisons with some existing competitive methods show the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا