ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative Comparison between Electronic Raman Scattering and Angle-Resolved Photoemission Spectra in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ Superconductors: Doping Dependence of Nodal and Antinodal Superconducting Gaps

82   0   0.0 ( 0 )
 نشر من قبل Shigeki Miyasaka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Both electronic Raman scattering (ERS) and angle-resolved photoemission spectra (ARPES) revealed two energy scales for the gap in different momentum spaces in the cuprates. However, the interpretations were different, and the gap values were also different in two experiments. In order to clarify the origin of these discrepancies, we directly compared ERS and ARPES by calculating ERS from the experimental data of ARPES through the Kubo formula. The calculated ERS spectra were in good agreement with the experimental results except for the B$_{1g}$ peak energies. The doping-dependent B$_{2g}$ peak energy was well reproduced from a doping-independent d-wave gap deduced from ARPES, by assuming a particular spectral weight distribution along the Fermi surface. The B$_{1g}$ peak energies could not be reproduced by the ARPES data. The difference between B$_{1g}$ ERS and antinodal ARPES became larger with underdoping, which implies that the effect of the pseudogap is different in these two techniques.



قيم البحث

اقرأ أيضاً

103 - S. P. Zhao , X. B. Zhu , Y. F. Wei 2007
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper ature-dependent measurement. A d-wave Eliashberg analysis shows that the spectrum at 4.2 K can be well fitted by considering electron couplings to a bosonic magnetic resonance mode and a broad high-energy continuum. Above $T_c$, the spectra show a clear pseudogap that persists up to 230 K, and a crossover can be seen indicating two different pseudogap phases existing above $T_c$. The intrinsic electron tunneling nature is discussed in the analysis.
180 - G. C. Kim , M. Cheon , 2014
In the present work, we report the new findings on the doping level dependence of the phase coherence between superconducting Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) grains. The experimental results from the strongly underdoped and overdoped regi mes deviated from the expectation based on the doping level dependence of the superfluid density at $T$ = 0 K. These findings appear to be governed by interplay between competing orders inside the superconducting dome of cuprate superconductors. Two quantum critical points are likely to exist at the underdoped and overdoped regimes beneath the superconducting dome.
We introduce a formalism for calculating dynamic response functions using experimental single particle Greens functions derived from angle resolved photoemission spectroscopy (ARPES). As an illustration of this procedure we estimate the dynamic spin response of the cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. We find good agreement with superconducting state neutron data, in particular the $(pi,pi)$ resonance with its unusual `reversed magnon dispersion. We anticipate our formalism will also be of useful in interpreting results from other spectroscopies, such as optical and Raman responses.
101 - Yu He , Su-Di Chen , Zi-Xiang Li 2020
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma gnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true in cuprate superconductors in which mutual relationships among superconductivity, pseudogap, and broken-spatial-symmetry states have attracted much attention. Here we observe energy and momentum dependent bipartite electronic superstructures in the vortex core of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using spectroscopic-imaging scanning tunneling microscopy (SI-STM). In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we show that the quasiparticle scattering off vortices generates the electronic superstructure known as vortex checkerboard. In the high-energy region where the pseudogap develops, vortices amplify the broken-spatial-symmetry patterns that preexist in zero field. These data reveal canonical d-wave superconductivity near the node, yet competition between superconductivity and broken-spatial-symmetry states near the antinode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا