ﻻ يوجد ملخص باللغة العربية
In this paper, we exploit the gradient flow structure of continuous-time formulations of Bayesian inference in terms of their numerical time-stepping. We focus on two particular examples, namely, the continuous-time ensemble Kalman-Bucy filter and a particle discretisation of the Fokker-Planck equation associated to Brownian dynamics. Both formulations can lead to stiff differential equations which require special numerical methods for their efficient numerical implementation. We compare discrete gradient methods to alternative semi-implicit and other iterative implementations of the underlying Bayesian inference problems.
This paper develops a new empirical Bayesian inference algorithm for solving a linear inverse problem given multiple measurement vectors (MMV) of under-sampled and noisy observable data. Specifically, by exploiting the joint sparsity across the multi
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings.
Three problems for a discrete analogue of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: 1) the problem with a point source on an entire plane; 2) the problem of diff
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the low
In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that