ﻻ يوجد ملخص باللغة العربية
In this paper we analyze different ways of performing principal component analysis throughout three different approaches: robust covariance and correlation matrix estimation, projection pursuit approach and non-parametric maximum entropy algorithm. The objective of these approaches is the correction of the well known sensitivity to outliers of the classical method for principal component analysis. Due to their robustness, they perform very well in contaminated data, while the classical approach fails to preserve the characteristics of the core information.
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape
Let $X$ be a mean zero Gaussian random vector in a separable Hilbert space ${mathbb H}$ with covariance operator $Sigma:={mathbb E}(Xotimes X).$ Let $Sigma=sum_{rgeq 1}mu_r P_r$ be the spectral decomposition of $Sigma$ with distinct eigenvalues $mu_1
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing emp
We consider the sparse principal component analysis for high-dimensional stationary processes. The standard principal component analysis performs poorly when the dimension of the process is large. We establish the oracle inequalities for penalized pr
Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered for example as movement trajectories on the surface of the earth, are an important special case. We consider an intrinsic