ﻻ يوجد ملخص باللغة العربية
This paper proposes Koopman operator theory and the related algorithm dynamical mode decomposition (DMD) for analysis and control of signalized traffic flow networks. DMD provides a model-free approach for representing complex oscillatory dynamics from measured data, and we study its application to several problems in signalized traffic. We first study a single signalized intersection, and we propose applying this method to infer traffic signal control parameters such as phase timing directly from traffic flow data. Next, we propose using the oscillatory modes of the Koopman operator, approximated with DMD, for early identification of unstable queue growth that has the potential to cause cascading congestion. Then we demonstrate how DMD can be coupled with knowledge of the traffic signal control status to determine traffic signal control parameters that are able to reduce queue lengths. Lastly, we demonstrate that DMD allows for determining the structure and the strength of interactions in a network of signalized intersections. All examples are demonstrated using a case study network instrumented with high resolution traffic flow sensors.
We provide a framework for learning of dynamical systems rooted in the concept of representations and Koopman operators. The interplay between the two leads to the full description of systems that can be represented linearly in a finite dimension, ba
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we
We analyze the performance of Dynamic Mode Decomposition (DMD)-based approximations of the stochastic Koopman operator for random dynamical systems where either the dynamics or observables are affected by noise. Under certain ergodicity assumptions,
We study numerical approaches to computation of spectral properties of composition operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized Laplace Analysis. We cast the Dynamic Mode-Decomposition type methods in t
Starting from measured data, we develop a method to compute the fine structure of the spectrum of the Koopman operator with rigorous convergence guarantees. The method is based on the observation that, in the measure-preserving ergodic setting, the m