ﻻ يوجد ملخص باللغة العربية
This paper presents an investigation of the discharge propagation (DP) to the readout electrode that occurs with a microsecond time delay after a primary discharge that develops inside a GEM foil hole. A single hole THGEM (THick GEM) foil that enables a controlled discharge position and the induction of primary discharge with an over-voltage in the THGEM foil has been used in the initial DP measurements. In order to justify the use of a custom-made THGEM foil, additional measurements were made with a standard GEM foil. Correlated optical (with an ordinary SLR and a high-speed camera) and electrical measurements of the delayed DP were made for Ne-CO$_2$-N$_2$ (90-10-5) mixture and with different powering configurations. Measurements show that the delayed DP happens without a drift field, with an inverted induction field, inverted THGEM voltages or an inverted drift field. After the primary discharge, there is a charge transfer in the induction region at an induction field value below that of the onset field for DP. In the time between the primary discharge and the delayed DP, three different current regimes are observed, which suggests multiple charge transfer mechanisms in the induction region. High-speed camera recordings provide valuable insight into the time evolution of the primary and the delayed DP, especially when correlated with electrical measurements.
A prototype Gas Electron Multiplier (GEM) detector is under construction for medical imaging purposes. A single thick GEM of size 10x10 cm^2 is assembled inside a square shaped air-tight box which is made of Perspex glass. In order to ionize gas insi
Secondary discharges, which consist of the breakdown of a gap near a GEM foil upon a primary discharge across that GEM, are studied in this work. Their main characteristics are the occurrence a few $10,mu textrm{s}$ after the primary, the relativel
We present the results of our recent studies of a Thick Gaseous Electron Multiplier (THGEM)-based detector, operated in Ar, Xe and Ar:Xe (95:5) at various gas pressures. Avalanche-multiplication properties and energy resolution were investigated with
Gas electron multiplier (GEM) is widely used in modern gas detectors of ionizing radiation in experiments on high-energy physics at accelerators and in other fields of science. Typically the GEM devices are based on a dielectric foil with holes and e
We investigate the influence of the high voltage scheme elements on the stability of a detector based on a single $10times10$ cm$^2$ area GEM with respect to the secondary discharge occurrence. These violent events pose a major threat to the integrit