ترغب بنشر مسار تعليمي؟ اضغط هنا

Entangling Spins in Double Quantum Dots and Majorana Bound States

268   0   0.0 ( 0 )
 نشر من قبل Marko Rancic
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coupling between a singlet-triplet qubit realized in a double quantum dot to a topological qubit realized by spatially well-separated Majorana bound states. We demonstrate that the singlet-triplet qubit can be leveraged for readout of the topological qubit and for supplementing the gate operations that cannot be performed by braiding of Majorana bound states. Furthermore, we extend our setup to a network of singlet-triplet and topological hybrid qubits that paves the way to scalable fault-tolerant quantum computing.

قيم البحث

اقرأ أيضاً

A magnetic impurity coupled to a superconductor gives rise to a Yu-Shiba-Rusinov (YSR) state inside the superconducting energy gap. With increasing exchange coupling the excitation energy of this state eventually crosses zero and the system switches to a YSR groundstate with bound quasiparticles screening the impurity spin by $hbar/2$. Here we explore InAs nanowire double quantum dots tunnel coupled to a superconductor and demonstrate YSR screening of spin-1/2 and spin-1 states. Gating the double dot through 9 different charge states, we show that the honeycomb pattern of zero-bias conductance peaks, archetypal of double dots coupled to normal leads, is replaced by lines of zero-energy YSR states. These enclose regions of YSR-screened dot spins displaying distinctive spectral features, and their characteristic shape and topology change markedly with tunnel coupling strengths. We find excellent agreement with a simple zero-bandwidth approximation, and with numerical renormalization group calculations for the two-orbital Anderson model.
Entanglement generation and detection are two of the most sought-after goals in the field of quantum control. Besides offering a means to probe some of the most peculiar and fundamental aspects of quantum mechanics, entanglement in many-body systems can be used as a tool to reduce fluctuations below the standard quantum limit. For spins, or spin-like systems, such a reduction of fluctuations can be realized with so-called squeezed states. Here we present a scheme for achieving coherent spin squeezing of nuclear spin states in few-electron quantum dots. This work represents a major shift from earlier studies in quantum dots, which have explored classical narrowing of the nuclear polarization distribution through feedback involving stochastic spin flips. In contrast, we use the nuclear-polarization-dependence of the electron spin resonance (ESR) to provide a non-linearity which generates a non-trivial, area-preserving, twisting dynamics that squeezes and stretches the nuclear spin Wigner distribution without the need for nuclear spin flips.
We study the low-energy physics of a one-dimensional array of superconducting quantum dots realized by proximity coupling a semiconductor nanowire to multiple superconducting islands separated by narrow uncovered regions. The effective electrostatic potential inside the quantum dots and the uncovered regions can be controlled using potential gates. By performing detailed numerical calculations based on effective tightbinding models, we find that multiple low-energy sub-gap states consisting of partially overlapping Majorana bound states emerge generically in the vicinity of the uncovered regions. Explicit differential conductance calculations show that a robust zero-bias conductance peak is not inconsistent with the presence of such states localized throughout the system, hence the observation of such a peak does not demonstrate the realization of well-separated Majorana zero modes. However, we find that creating effective potential wells in the uncovered regions traps pairs of nearby partially overlapping Majorana bound states, which become less separated and acquire a finite gap that protects the pair of Majorana zero modes localized at the ends of the system. This behavior persists over a significant parameter range, suggesting that proximitized quantum dot arrays could provide a platform for highly controllable Majorana devices.
We demonstrate several new electron transport phenomena mediated by Andreev bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Thre e-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state transition S-QD systems can occur. We ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process called excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel mechanism called resonant ABS tunneling. In the latter, electrons are transferred via the ABS without creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi tion): one is characterized by finite-energy in-gap Andreev bound states, while the other has only extended bulk states. The Andreev bound state regime is characterized by strong features in the tunneling spectra creating a gap closure signature, but no gap reopening signature should be apparent above the topological quantum phase transition, in agreement with most recent experimental observations. The gap closure feature is actually the coming together of the Andreev bound states at high chemical potential rather than a simple trivial gap of extended bulk states closing at the transition. Our theoretical finding establishes the generic intrinsic Andreev bound states on the trivial side of the topological quantum phase transition as the main contributors to the tunneling conductance spectra, providing a generic interpretation of existing experiments in clean Majorana nanowires. Our work also explains why experimental tunnel conductance spectra generically have gap closing features below the topological quantum phase transition, but no gap opening features above it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا