ﻻ يوجد ملخص باللغة العربية
For a graph $G= (V,E)$, a double Roman dominating function (DRDF) is a function $f : V to {0,1,2,3}$ having the property that if $f (v) = 0$, then vertex $v$ must have at least two neighbors assigned $2$ under $f$ or {at least} one neighbor $u$ with $f (u) = 3$, and if $f (v) = 1$, then vertex $v$ must have at least one neighbor $u$ with $f (u) ge 2$. In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF $f$ such that $sum_{vin V} f (v)$ is minimum. We propose {five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations.} Further, we prove that {the first four models indeed solve the double Roman domination problem, and the last two models} are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an $H(2(Delta+1))$-approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.
For a graph $G,$ the set $D subseteq V(G)$ is a porous exponential dominating set if $1 le sum_{d in D} left( 2 right)^{1-dist(d,v)}$ for every $v in V(G),$ where $dist(d,v)$ denotes the length of the shortest $dv$ path. The porous exponential domina
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for so
Property A is a form of weak amenability for groups and metric spaces introduced as an approach to the famous Novikov higher signature conjecture, one of the most important unsolved problems in topology. We show that property A can be reduced to a
Ahlswede and Katona (1977) posed the following isodiametric problem in Hamming spaces: For every $n$ and $1le Mle2^{n}$, determine the minimum average Hamming distance of binary codes with length $n$ and size $M$. Fu, Wei, and Yeung (2001) used linea
This paper discusses the odds problem, proposed by Bruss in 2000, and its variants. A recurrence relation called a dynamic programming (DP) equation is used to find an optimal stopping policy of the odds problem and its variants. In 2013, Buchbinder,