ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-Clock-Based Time Scale

219   0   0.0 ( 0 )
 نشر من قبل Jian Yao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A time scale is a procedure for accurately and continuously marking the passage of time. It is exemplified by Coordinated Universal Time (UTC), and provides the backbone for critical navigation tools such as the Global Positioning System (GPS). Present time scales employ microwave atomic clocks, whose attributes can be combined and averaged in a manner such that the composite is more stable, accurate, and reliable than the output of any individual clock. Over the past decade, clocks operating at optical frequencies have been introduced which are orders of magnitude more stable than any microwave clock. However, in spite of their great potential, these optical clocks cannot be operated continuously, which makes their use in a time scale problematic. In this paper, we report the development of a hybrid microwave-optical time scale, which only requires the optical clock to run intermittently while relying upon the ensemble of microwave clocks to serve as the flywheel oscillator. The benefit of using clock ensemble as the flywheel oscillator, instead of a single clock, can be understood by the Dick-effect limit. This time scale demonstrates for the first time sub-nanosecond accuracy for a few months, attaining a fractional frequency uncertainty of 1.45*10-16 at 30 days and reaching the 10-17 decade at 50 days, with respect to UTC. This time scale significantly improves the accuracy in timekeeping and could change the existing time-scale architectures.

قيم البحث

اقرأ أيضاً

This paper discusses how to build a time scale with an intermittently-operated optical clock. In particular, it gives suggestions on how long and how often to run an optical clock. It also explores the benefits of having an optical clock in a time sc ale, by comparing with the current UTC(NIST) performance and the time scale with a continuously-operated Cs fountain.
Time scales consistently provide precise time stamps and time intervals by combining atomic frequency standards with a reliable local oscillator. Optical frequency standards, however, have not been applied to the generation of time scales, although t hey provide superb accuracy and stability these days. Here, by steering an oscillator frequency based on the intermittent operation of a $^{87}$Sr optical lattice clock, we realized an optically steered time scale TA(Sr) that was continuously generated for half a year. The resultant time scale was as stable as International Atomic Time (TAI) with its accuracy at the $10^{-16}$ level. We also compared the time scale with TT(BIPM16). TT(BIPM) is computed in deferred time each January based on a weighted average of the evaluations of the frequency of TAI using primary and secondary frequency standards. The variation of the time difference TA(Sr) $-$ TT(BIPM16) was 0.79 ns after 5 months, suggesting the compatibility of using optical clocks for time scale generation. The steady signal also demonstrated the capability to evaluate one-month mean scale intervals of TAI over all six months with comparable uncertainties to those of primary frequency standards (PFSs).
Optical clocks are not only powerful tools for prime fundamental research, but are also deemed for the re-definition of the SI base unit second as they now surpass the performance of caesium atomic clocks in both accuracy and stability by more than a n order of magnitude. However, an important obstacle in this transition has so far been the limited reliability of the optical clocks that made a continuous realization of a timescale impractical. In this paper, we demonstrate how this situation can be resolved and that a timescale based on an optical clock can be established that is superior to one based on even the best caesium fountain clocks. The paper also gives further proof of the international consistency of strontium lattice clocks on the $10^{-16}$ accuracy level, which is another prerequisite for a change in the definition of the second.
We demonstrate a time scale based on a phase stable optical carrier that accumulates an estimated time error of $48pm94$ ps over 34 days of operation. This all-optical time scale is formed with a cryogenic silicon cavity exhibiting improved long-term stability and an accurate $^{87}$Sr lattice clock. We show that this new time scale architecture outperforms existing microwave time scales, even when they are steered to optical frequency standards. Our analysis indicates that this time scale is capable of reaching a stability below $1times10^{-17}$ after a few months of averaging, making timekeeping at the $10^{-18}$ level a realistic prospect.
We develop differential measurement protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the l aser coherence time, avoids the Dick effect, and supports Heisenberg-limited measurement precision. We present protocols for such frequency comparisons and develop numerical simulations of the protocols with realistic noise sources. These methods provide a route to reduce frequency ratio measurement durations by more than an order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا