ﻻ يوجد ملخص باللغة العربية
We consider Quantum Electrodynamics in $2{+}1$ dimensions with $N_f$ fermionic or bosonic flavors, allowing for interactions that respect the global symmetry $U(N_f/2)^2$. There are four bosonic and four fermionic fixed points, which we analyze using the large $N_f$ expansion. We systematically compute, at order $O(1/N_f)$, the scaling dimensions of quadratic and quartic mesonic operators. We also consider Quantum Electrodynamics with minimal supersymmetry. In this case the large $N_f$ scaling dimensions, extrapolated at $N_f{=}2$, agree quite well with the scaling dimensions of a dual supersymmetric Gross-Neveu-Yukawa model. This provides a quantitative check of the conjectured duality.
We study $mathcal{N}=1$ supersymmetric three-dimensional Quantum Electrodynamics with $N_f$ two-component fermions. Due to the infra-red (IR) softening of the photon, $ep$-scalar and photino propagators, the theory flows to an interacting fixed point
We review the development of the large $N$ method, where $N$ indicates the number of flavours, used to study perturbative and nonperturbative properties of quantum field theories. The relevant historical background is summarized as a prelude to the i
We study the analytic properties of the t Hooft coupling expansion of the beta-function at the leading nontrivial large-$N_f$ order for QED, QCD, Super QED and Super QCD. For each theory, the t Hooft coupling expansion is convergent. We discover that
In this work we compute the entanglement entropy in continuous icMERA tensor networks for large $N$ models at strong coupling. Our results show that the $1/N$ quantum corrections to the Fisher information metric (interpreted as a local bond dimension
I consider quantum electrodynamics with many electrons in 2+1 space-time dimensions at finite temperature. The relevant dimensionless interaction parameter for this theory is the fine structure constant divided by the temperature. The theory is solva