ﻻ يوجد ملخص باللغة العربية
We describe a web of well-known dualities connecting quantum field theories in $d=1+1$ dimensions. The web is constructed by gauging ${bf Z}_2$ global symmetries and includes a number of perennial favourites such as the Jordan-Wigner transformation, Kramers-Wannier duality, bosonization of a Dirac fermion, and T-duality. There are also less-loved examples, such as non-modular invariant $c=1$ CFTs that depend on a background spin structure.
We study a model in $d = 2 + 1$ space-time dimensions with two sectors. One of them, which can be considered as the visible sector, contains just a $U(1)$ gauge field which acts as a probe for the other (hidden) sector, given by a second $U(1)$ gauge
We develop a geometrical structure of the manifolds $Gamma$ and $hatGamma$ associated respectively to the gauge symmetry and to the BRST symmetry. Then, we show that ($hatGamma,hatzeta,Gamma$), where $hatzeta$ is the group of BRST transformations, is
We consider an analogue of Wittens $SL(2,mathbb{Z})$ action on three-dimensional QFTs with $U(1)$ symmetry for $2k$-dimensional QFTs with $mathbb{Z}_2$ $(k-1)$-form symmetry. We show that the $SL(2,mathbb{Z})$ action only closes up to a multiplicatio
In this paper, we exploit a subtle indeterminacy in the definition of the spherical Kervaire-Milnor invariant which was discovered by R. Stong to construct non-spin 4-manifolds with even intersection form and prescribed signature.
In arXiv:1906.11820 and arXiv:1907.05404 we proposed an approach based on graphs to characterize 5d superconformal field theories (SCFTs), which arise as compactifications of 6d $mathcal{N}= (1,0)$ SCFTs. The graphs, so-called combined fiber diagrams