ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous $Hto ZZ to 4ell$ decay and its interference effects at the LHC

59   0   0.0 ( 0 )
 نشر من قبل Xia Wan Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the spinor helicity amplitudes of anomalous $Hto ZZ to 4ell$ decay. After embedding these analytic formulas into the $texttt{MCFM}$ package, we study the interference effects between the anomalous $ggto Hto ZZ to 4ell$ process and the SM processes, which are indispensable in the Higgs off-shell region. Subsequently, the constraints on the anomalous couplings are estimated using LHC experimental data.

قيم البحث

اقرأ أيضاً

The mixing of new vectorlike leptons with leptons in the standard model can generate flavor violating couplings of $h$, $W$ and $Z$ between heavy and light leptons. Focusing on the couplings of the muon, the partial decay width of $hto e_4^pm mu^mp$, where $e_4$ is the new lepton, can be significant when this process is kinematically allowed. Subsequent decays $e_4^pm to Zmu^pm$ and $e_4^pm to W^pm u$ lead to the same final states as $h to ZZ^* to Z mu^+mu^-$ and $h to WW^* to W mu u$, thus possibly affecting measurements of these processes. We calculate $hto e_4 ell_i to Zell_iell_j$, where $ell_{i,j}$ are standard model leptons, including the possibility of off-shell decays, interference with $hto ZZ^* to Z ell_i ell_i$, and the mass effect of $ell_{i,j}$ which are important when the mass of $e_4$ is close to the mass of the Higgs boson. We derive constraints on masses and couplings of the heavy lepton from the measurement of $hto 4ell$. We focus on the couplings of the muon and discuss possible effects on $hto ZZ^*$ from the region of parameters that can explain the anomaly in the measurement of the muon g-2.
Signal-background interference effects are studied for H --> WW and H --> ZZ searches in gluon fusion at the LHC. More specifically, the interference in the channels with semileptonic weak boson pair decay is analysed for light and heavy Higgs masses with minimal and realistic experimental selection cuts. In the semileptonic decay modes, the interference is affected by tree-level background contributions enhanced by 1/e^2 relative to the gluon-fusion continuum background in the fully leptonic decay modes. We find that for both light and heavy Higgs masses the interference with the loop-induced weak-boson pair background dominates over the interference with the tree-level weak-boson plus jets background for a range of selection cuts. We therefore conclude that higher-order background contributions can induce leading interference effects. With appropriate background suppression cuts the interference can be reduced to the 10% level for heavy Higgs masses, and to the per mille level for the light SM Higgs.
71 - Nikolas Kauer 2013
WW/ZZ interference for Higgs signal and continuum background as well as signal-background interference is studied for same-flavour l anti-nu_l anti-l nu_l final states produced in gluon-gluon scattering at the LHC for light and heavy Higgs masses wit h minimal and realistic experimental selection cuts. For the signal cross section, we find WW/ZZ interference effects of O(5%) at M_H = 126 GeV. For M_H >= 200 GeV, we find that WW/ZZ interference is negligible. For the gg continuum background, we also find that WW/ZZ interference is negligible. As general rule, we conclude that non-negligible WW/ZZ interference effects occur only if at least one weak boson of the pair is dominantly off-shell due to kinematic constraints. The subdominant weak boson pair contribution induces a correction to the signal-background interference, which is at the few percentage point level before search selection cuts. Optimised selection cuts for M_H >~ 600 GeV are suggested.
We present a general procedure for measuring the tensor structure of the coupling of the scalar Higgs-like boson recently discovered at the LHC to two Z bosons, including the effects of interference among different operators. To motivate our concern with this interference, we explore the parameter space of the couplings in the effective theory describing these interactions and illustrate the effects of interference on the differential dilepton mass distributions. Kinematic discriminants for performing coupling measurements that utilize the effects of interference are developed and described. We present projections for the sensitivity of coupling measurements that use these discriminants in future LHC operation in a variety of physics scenarios.
We present the first calculation of the full next-to-leading-order electroweak and QCD corrections for vector-boson scattering (VBS) into a pair of Z bosons at the LHC. We consider specifically the process ${rm ppto e^{+}e^{-}mu^{+}mu^{-}jj}+X$ at or ders $mathcal{O}(alpha^7)$ and $mathcal{O}(alpha_salpha^6)$ and take all off-shell and interference contributions into account. Owing to the presence of enhanced Sudakov logarithms, the electroweak corrections amount to $-16%$ of the leading-order electroweak fiducial cross section and induce significant shape distortions of differential distributions. The QCD corrections on the other hand are larger ($+24%$) than typical QCD corrections in VBS. This originates from considering the full computation including tri-boson contributions in a rather inclusive phase space. We also provide a leading-order analysis of all contributions to the cross section for ${rm pp to e^{+}e^{-}mu^{+}mu^{-}jj}+X$ in a realistic setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا