ﻻ يوجد ملخص باللغة العربية
Collisions between cold molecules are essential for studying fundamental aspects of quantum chemistry, and may enable formation of quantum degenerate molecular matter by evaporative cooling. However, collisions between trapped, naturally occurring molecules have so far eluded direct observation due to the low collision rates of dilute samples. We report the first directly observed collisions between cold, trapped molecules, achieved without the need of laser cooling. We magnetically capture molecular oxygen in a 0.8K x kB deep superconducting trap, and set bounds on the ratio between the elastic and inelastic scattering rates, the key parameter determining the feasibility of evaporative cooling. We further co-trap and identify collisions between atoms and molecules, paving the way to studies of cold interspecies collisions in a magnetic trap.
Measurements of interactions between cold molecules and ultracold atoms can allow for a detailed understanding of fundamental collision processes. These measurements can be done using various experimental geometries including where both species are i
We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally e
We present an experimental and theoretical study of atom-molecule collisions in a mixture of cold, trapped atomic nitrogen and NH molecules at a temperature of $sim 600$~mK. We measure a small N+NH trap loss rate coefficient of $k^{(mathrm{N+NH})}_ma
Trapping of atoms and molecules in electrostatic, magnetic and optical traps has enabled studying atomic and molecular interactions on a timescale of many seconds, allowing observations of ultra-cold collisions and reactions. Here we report the first
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnet