ترغب بنشر مسار تعليمي؟ اضغط هنا

Zenith angle dependence of the cosmic ray rate as measured with Imaging air-Cherenkov Telescopes

130   0   0.0 ( 0 )
 نشر من قبل Thomas Bretz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas Bretz




اسأل ChatGPT حول البحث

The rate of extensive air-showers observed with imaging air-Cherenkov telescopes is zenith angle dependent. This effect originates from the increasing geometrical distance of the observed shower to the telescope with increasing zenith distance. This paper investigates how this alters the observed image and how this affects the trigger rate as a function of zenith angle. The discussed effects include the change of Cherenkov light yield, of absorption in the atmosphere, of photon density at the aperture and of the image size at the focal plane of the telescope. Based on a simple model for the atmosphere and well-known first principles on the development of extensive air-showers, the zenith angle dependence is expressed analytically. The assumption that most light is emitted from the shower core and mathematical approximations allow to derive an analytical expression describing the zenith angle dependence well with only three free parameters which are directly linked with the underlying physics. This suggests further investigations about how these fit parameters are linked to the properties of the atmosphere and the instrument. Using data published by the First G-APD Cherenkov Telescope, a good match of the fit functions with the data is obtained. For the trigger rate of cosmic rays, the obtained parameters are consistent with the naive expectation.



قيم البحث

اقرأ أيضاً

138 - G. Mohanty 1999
We present here results from large zenith-angle observations with the CAT atmospheric Cherenkov imaging telescope, based on data taken on the Crab Nebula and on the blazar Mk501 from 1996 onwards. From Monte Carlo simulations, the threshold energy of the telescope is expected to vary from about 250 GeV at zenith to about 2 TeV at a zenith angle of 60 degrees. The lower source-fluxes due to the increased threshold energy are partly compensated for by an increase in the effective collection area at large zenith angles, thus allowing a significant extension of the dynamic range of the CAT telescope, with a tolerable loss in sensitivity. We discuss the implications for source detection and energy spectrum measurements.
278 - M.Teshima , E.Carmona , P.Colin 2009
The Imaging Air Cherenkov Telescopes (IACTs), like, HESS, MAGIC and VERITAS well demonstrated their performances by showing many exciting results at very high energy gamma ray domain, mainly between 100 GeV and 10 TeV. It is important to investigate how much we can improve the sensitivity in this energy range, but it is also important to expand the energy coverage and sensitivity towards new domains, the lower and higher energies, by extending this IACT techniques. For this purpose, we have carried out the optimization of the array of large IACTs assuming with new technologies, advanced photodetectors, and Ultra Fast readout system by Monte Carlo simulation, especially to obtain the best sensitivity in the energy range between 10 GeV and 100 GeV. We will report the performance of the array of Large IACTs with advanced technologies and its limitation.
In this paper we describe the different software and hardware elements of a mini-telescope for the detection of cosmic rays and gamma-rays using the Cherenkov light emitted by their induced particle showers in the atmosphere. We estimate the physics reach of the standalone mini-telescope and present some results of the measurements done at the Sauverny Observatory of the University of Geneva and at the Saint-Luc Observatory, which demonstrate the ability of the telescope to observe cosmic rays with energy above about 100 TeV. Such a mini-telescope can constitute a cost-effective out-trigger array that can surround other gamma-ray telescopes or extended air showers detector arrays. Its development was born out of the desire to illustrate to students and amateurs the cosmic ray and gamma-ray detection from ground, as an example of what is done in experiments using larger telescopes. As a matter of fact, a mini-telescope can be used in outreach night events. While outreach is becoming more and more important in the scientific community to raise interest in the general public, the realisation of the mini-telescope is also a powerful way to train students on instrumentation such as photosensors, their associated electronics, acquisition software and data taking. In particular, this mini-telescope uses silicon photomultipliers (SiPM) and the dedicated ASIC, CITIROC.
129 - Jamie Holder 2015
The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ra y sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.
106 - E. B. Postnikov 2018
In this work we compare two open source machine learning libraries, PyTorch and TensorFlow, as software platforms for rejecting hadron background events detected by imaging air Cherenkov telescopes (IACTs). Monte Carlo simulation for the TAIGA-IACT t elescope is used to estimate background rejection quality. A wide variety of neural network algorithms provided by both libraries can easily be tested on various types of data, which is useful for various imaging air Cherenkov experiments. The work is a component of the Astroparticle.online project, which collaborates with the TAIGA and KASCADE experiments and welcomes any astroparticle experiment to join.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا