ترغب بنشر مسار تعليمي؟ اضغط هنا

Directional square functions and a sharp Meyer lemma

63   0   0.0 ( 0 )
 نشر من قبل Ioannis Parissis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative formulations of Feffermans counterexample for the ball multiplier are naturally linked to square function and vector-valued estimates for directional singular integrals. The latter are usually referred to as Meyer-type lemmas and are traditionally attacked by combining weighted inequalities with sharp estimates for maximal directional averaging operators. This classical approach fails to give sharp bounds. In this article we develop a novel framework for square function estimates, based on directional Carleson embedding theorems and multi-parameter time-frequency analysis, which overcomes the limitations of weighted theory. In particular we prove the sharp form of Meyers lemma, namely a sharp operator norm bound for vector-valued directional singular integrals, in both one and two parameters, in terms of the cardinality of the given set of directions. Our sharp Meyer lemma implies an improved quantification of the reverse square function estimate for tangential $deltatimes delta^2$-caps on $mathbb S^1$. We also prove sharp square function estimates for conical and radial multipliers. A suitable combination of these estimates yields a new and currently best known bound for the Fourier restriction to a $N$-gon, improving on previous results of A. Cordoba.

قيم البحث

اقرأ أيضاً

In this paper, we prove a sharp Meis Lemma with assuming the bases of the underlying general dyadic grids are different. As a byproduct, we specify all the possible cases of adjacent general dyadic systems with different bases. The proofs have connections with certain number-theoretic properties.
176 - Guozhen Lu , Qiaohua Yang 2019
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev -Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).
We consider 2d critical Bernoulli percolation on the square lattice. We prove an approximate color-switching lemma comparing k arm probabilities for different polychromatic color sequences. This result is well-known for site percolation on the triang ular lattice in [Nolin08]. To handle the complications arising from the dual lattice, we introduce a shifting transformation to convert arms between the primal and the dual lattices.
We provide elementary proofs for the terms that are left in the work of Kelly Bickel, Sandra Pott, Maria C. Reguera, Eric T. Sawyer, Brett D. Wick who proved the sharp weighted $A_2$ bound for Haar shifts and Haar multiplier. Our proofs use weighted square function estimate, Carleson embedding and Wilsons system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا