ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermo-compositional diabatic convection in the atmospheres of brown dwarfs and in Earths atmosphere and oceans

155   0   0.0 ( 0 )
 نشر من قبل Pascal Tremblin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By generalizing the theory of convection to any type of thermal and compositional source terms (diabatic processes), we show that thermohaline convection in Earth oceans, fingering convection in stellar atmospheres, and moist convection in Earth atmosphere are deriving from the same general diabatic convective instability. We show also that radiative convection triggered by CO/CH4 transition with radiative transfer in the atmospheres of brown dwarfs is analog to moist and thermohaline convection. We derive a generalization of the mixing length theory to include the effect of source terms in 1D codes. We show that CO/CH4 radiative convection could significantly reduce the temperature gradient in the atmospheres of brown dwarfs similarly to moist convection in Earth atmosphere thus possibly explaining the reddening in brown-dwarf spectra. By using idealized two-dimensional hydrodynamic simulations in the Ledoux unstable regime, we show that compositional source terms can indeed provoke a reduction of the temperature gradient. The L/T transition could be explained by a bifurcation between the adiabatic and diabatic convective transports and could be seen as a giant cooling crisis: an analog of the boiling crisis in liquid/steam-water convective flows. This mechanism with other chemical transitions could be present in many giant and earth-like exoplanets. The study of the impact of different parameters (effective temperature, compositional changes) on CO/CH4 radiative convection and the analogy with Earth moist and thermohaline convection is opening the possibility to use brown dwarfs to better understand some aspects of the physics at play in the climate of our own planet.



قيم البحث

اقرأ أيضاً

Earths volatile elements (H, C, and N) are essential to maintaining habitable conditions for metazoans and simpler life forms. However, identifying the sources (comets, meteorites, and trapped nebular gas) that supplied volatiles to Earth is not stra ightforward because secondary processes like mantle degassing, crustal recycling, and escape to space modified the composition of the atmosphere. Here, we review two complementary approaches to investigate the origin of Earths atmosphere and oceans. The geochemical approach uses volatile element abundances and isotopic compositions to identify the possible contributors to the atmosphere and to disentangle the processes that shaped it. In that respect, noble gases (He, Ne, Ar, Kr, and Xe), elements that are chemically inert and possess several isotopes produced by radioactivity, play a critical role. The dynamical approach uses our knowledge of planetary dynamics to track volatile delivery to the Earth, starting with dust transport in the disk to planet-building processes. The main conclusion is that Earth acquired most of its major volatile elements by accretion of planetesimals or embryos akin to volatile-rich meteorites. At the same time, solar/meteoritic noble gases were captured by embryos and some gases were lost to space, by hydrodynamic escape and large impacts. Comets did not contribute much H, C, and N but may have delivered significant noble gases, which could represent the only fingerprints of the bombardment of our planet with icy bodies. The processes that governed the delivery of volatile elements to the Earth are thought to be relatively common and it is likely that Earth-like planets covered with oceans exist in extra-solar systems.
158 - Ch. Helling 2016
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud par ticles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $gg B_{rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g., magnetic field induced star spots.
168 - Jeremy Bailey 2014
The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down thei r temperature range which now extends down to Y-dwarfs of <300 K. Modelling of these atmospheres has required the development of new techniques to deal with the molecular chemistry and clouds in these objects. The atmospheres of brown dwarfs are relatively well understood, but some problems remain, in particular the behavior of clouds at the L/T transition. Observational data for exoplanet atmosphere characterization is largely limited to giant exoplanets that are hot because they are near to their star (hot Jupiters) or because they are young and still cooling. For these planets there is good evidence for the presence of CO and H2O absorptions in the IR. Sodium absorption is observed in a number of objects. Reflected light measurements show that some giant exoplanets are very dark, indicating a cloud free atmosphere. However, there is also good evidence for clouds and haze in some other planets. It is also well established that some highly irradiated planets have inflated radii, though the mechanism for this inflation is not yet clear. Some other issues in the composition and structure of giant exoplanet atmospheres such as the occurence of inverted temperature structures, the presence or absence of CO2 and CH4, and the occurrence of high C/O ratios are still the subject of investigation and debate.
Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating spherical shell can exhibit a rather large number of behaviours often distinct from that of the single diffusive system. In order to understand how the differ ences in thermal and compositional molecular diffusivities determine the dynamics of thermo-compositional convection we investigate numerically the linear onset of convective instability in a double-diffusive setup. We construct an alternative equivalent formulation of the non-dimensional equations where the linearised double-diffusive problem is described by an effective Rayleigh number, $text{Ra}$, measuring the amplitude of the combined buoyancy driving, and a second parameter, $alpha$, measuring the mixing of the thermal and compositional contributions. This formulation is useful in that it allows for the analysis of several limiting cases and reveals dynamical similarities in the parameters space which are not obvious otherwise. We analyse the structure of the critical curves in this $text{Ra}-alpha$ space, explaining asymptotic behaviours in $alpha$, transitions between inertial and diffusive regimes, and transitions between large scale (fast drift) and small scale (slow drift) convection. We perform this analysis for a variety of diffusivities, rotation rates and shell aspect ratios showing where and when new modes of convection take place.
Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rota ting spherical shells full of incompressible two-component electrically-conducting fluid are reported. Four distinct regimes of rotating double-diffusive convection identified in a recent linear analysis (Silva et al., 2019, Geophys. Astrophys. Fluid Dyn., doi:10.1080/03091929.2019.1640875) are found to persist significantly beyond the onset of instability while their regime transitions remain abrupt. In the semi-convecting and the fingering regimes characteristic flow velocities are small compared to those in the thermally- and compositionally-dominated overturning regimes, while zonal flows remain weak in all regimes apart from the thermally-dominated one. Compositionally-dominated overturning convection exhibits significantly narrower azimuthal structures compared to all other regimes while differential rotation becomes the dominant flow component in the thermally-dominated case as driving is increased. Dynamo action occurs in all regimes apart from the regime of fingering convection. While dynamos persist in the semi-convective regime they are very much impaired by small flow intensities and very weak differential rotation in this regime which makes poloidal to toroidal field conversion problematic. The dynamos in the thermally-dominated regime include oscillating dipolar, quadrupolar and multipolar cases similar to the ones known from earlier parameter studies. Dynamos in the compositionally-dominated regime exhibit subdued temporal variation and remain predominantly dipolar due to weak zonal flow in this regime. These results significantly enhance our understanding of the primary drivers of planetary core flows and magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا