ﻻ يوجد ملخص باللغة العربية
We present our results on the continuation of our survey searching for new ZZ Ceti stars, inspired by the recently launched TESS space mission. The seven targets were bright DA-type white dwarfs located close to the empirical ZZ Ceti instability strip. We successfully identified one new pulsator candidate, namely PM J22299+3024, derived detection limits for possible pulsations of four objects for the first time, and determined new detection limits for two targets.
Using the SOAR 4.1 m telescope, we report on the discovery of low amplitude pulsations for three stars previously reported as Not-Observed-to-Vary (NOV) by Mukadam et al. (2004) and Mullally et al. (2005), which are inside the ZZ Ceti instability str
We report on the discovery of six new ZZ Ceti stars. They were selected as candidates based on preparatory photometric observations of objects from the Hamburg Quasar Survey (HQS), and based on the spectra of the Supernova Ia Progenitor Survey (SPY).
We report the discovery of eleven new ZZ Cetis using telescopes at OPD (Observatorio do Pico dos Dias/LNA) in Brazil, the 4.1 m SOAR (Southern Astrophysical Research) telescope at Cerro Pachon, Chile, and the 2.1 m Otto Struve telescope at McDonald o
Context. We continued our ground-based observing project with the season-long observations of ZZ Ceti stars at Konkoly Observatory. Our present targets are the newly discovered PM J22299+3024, and the already known LP 119-10 variables. LP 119-10 was
We combine all the reliably-measured eigenperiods for hot, short-period ZZ Ceti stars onto one diagram and show that it has the features expected from evolutionary and pulsation theory. To make a more detailed comparison with theory we concentrate on