ﻻ يوجد ملخص باللغة العربية
With the ultimate goal of developing a pixel-based readout for a TPC at the ILC, a GridPix readout system consisting of one Timepix3 chip with an integrated amplification grid was embedded in a prototype detector. The performance was studied in a testbeam with 2.5 GeV electrons at the ELSA accelerator in Bonn. The error on the track position measurement both in the drift direction and in the readout plane is dominated by diffusion. Systematic uncertainties are limited to below 10 $mu$m. The GridPix can detect single ionization electrons with high efficiency, which allows for energy loss measurements and particle identification. From a truncated sum, an energy loss (dE/dx) resolution of 4.1% is found for an effective track length of 1 m. Using the same type of chips, a Quad module was developed that can be tiled to cover a TPC readout plane at the ILC. Simulation studies show that a pixel readout can improve the momentum resolution of a TPC at the ILC by about 20%.
For the International Large Detector (ILD) at the planned International Linear Collider (ILC) a Time Projection Chamber (TPC) is foreseen as the main tracking detector. To achieve the required point resolution, Micro-Pattern Gaseous Detectors (MPGD)
A gaseous pixel readout module with four GridPix chips, called the quad, has been developed as a building block for a large time projection chamber readout plane. The quad module has dimensions 39.6 mm $times$ 28.38 mm and an active surface coverage
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogen
The performance and long term stability of an optically readout Time Projection Chamber with an electron amplification structure based on three Gas Electron Multipliers was studied. He/CF$_4$ based gas mixtures were used in two different proportions
Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and