ﻻ يوجد ملخص باللغة العربية
Double quantum dots (DQDs) hold great promise as building blocks for quantum technology as they allow for two electronic states to coherently couple. Defining QDs with materials rather than using electrostatic gating allows for QDs with a hard-wall confinement potential and more robust charge and spin states. An unresolved problem is how to individually address these quantum dots, which is necessary for controlling quantum states. We here report the fabrication of double quantum dot devices defined by the conduction band edge offset at the interface of the wurtzite and zinc blende crystal phases of InAs in nanowires. By using sacrifical epitaxial GaSb markers selectively forming on one crystal phase, we are able to precisely align gate electrodes allowing us to probe and control each QD independently. We hence observe textbook-like charge stability diagrams, a discrete energy spectrum and electron numbers consistent with theoretical estimates and investigate the tunability of the devices, finding that changing the electron number can be used to tune the tunnel barrier as expected by simple band diagram arguments.
We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments
The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rota
We study transport mediated by Andreev bound states formed in InSb nanowire quantum dots. Two kinds of superconducting source and drain contacts are used: epitaxial Al/InSb devices exhibit a doubling of tunneling resonances, while in NbTiN/InSb devic
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier [1]. This current is driven by a superconducting phase difference $phi$ between the leads. In the presence of chiral and tim