ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields

84   0   0.0 ( 0 )
 نشر من قبل Jean Dolbeault
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schr{o}dinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-ring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.



قيم البحث

اقرأ أيضاً

This paper is devoted to a collection of results on nonlinear interpolation inequalities associated with Schr{o}dinger operators involving Aharonov-Bohm magnetic potentials, and to some consequences. As symmetry plays an important role for establishi ng optimality results, we shall consider various cases corresponding to a circle, a two-dimensional sphere or a two-dimensional torus, and also the Euclidean spaces of dimensions two and three. Most of the results are new and we put the emphasis on the methods, as very little is known on symmetry, rigidity and optimality in presence of a magnetic field. The most spectacular applications are new magnetic Hardy inequalities in dimensions 2 and 3.
121 - Carlo Morosi 2015
We give fully explicit upper and lower bounds for the constants in two known inequalities related to the quadratic nonlinearity of the incompressible (Euler or) Navier-Stokes equations on the torus T^d. These inequalities are tame generalizations (in the sense of Nash-Moser) of the ones analyzed in the previous works [Morosi and Pizzocchero: CPAA 2012, Appl.Math.Lett. 2013].
136 - Mona Berciu , Holger Fehske 2011
We show that a proper consideration of the contribution of Trugman loops leads to a fairly low effective mass for a hole moving in a square lattice Ising antiferromagnet, if the bare hopping and the exchange energy scales are comparable. This contrad icts the general view that because of the absence of spin fluctuations, this effective mass must be extremely large. Moreover, in the presence of a transverse magnetic field, we show that the effective hopping integrals acquire an unusual dependence on the magnetic field, through Aharonov-Bohm interference, in addition to significant retardation effects. The effect of the Aharonov-Bohm interference on the cyclotron frequency (for small magnetic fields) and the Hofstadter butterfly (for large magnetic fields) is analyzed.
We show that the Aharonov-Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to an arbitrary globally hyperbolic spacetime unveils the presence of a new quantum number labeling charged superselection sectors. In the present paper we show that this topological quantum number amounts to the presence of a background flat potential which rules the behaviour of charges when transported along paths as in the Aharonov-Bohm effect. To confirm these abstract results we quantize the Dirac field in presence of a background flat potential and show that the Aharonov-Bohm phase gives an irreducible representation of the fundamental group of the spacetime labeling the charged sectors of the Dirac field. We also show that non-Abelian generalizations of this effect are possible only on space-times with a non-Abelian fundamental group.
In this work we study Dirac operators on two-dimensional domains coupled to a magnetic field perpendicular to the plane. We focus on the infinite-mass boundary condition (also called MIT bag condition). In the case of bounded domains, we establish th e asymptotic behavior of the low-lying (positive and negative) energies in the limit of strong magnetic field. Moreover, for a constant magnetic field $B$, we study the problem on the half-plane and find that the Dirac operator has continuous spectrum except for a gap of size $a_0sqrt{B}$, where $a_0in (0,sqrt{2})$ is a universal constant. Remarkably, this constant characterizes certain energies of the system in a bounded domain as well. We discuss how these findings, together with our previous work, give a fairly complete description of the eigenvalue asymptotics of magnetic two-dimensional Dirac operators under general boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا