ﻻ يوجد ملخص باللغة العربية
The purpose in this paper is to determine the global behavior of solutions to the initial-boundary value problems for energy-subcritical and critical semilinear heat equations by initial data with lower energy than the mountain pass level in energy spaces associated with self-adjoint operators satisfying Gaussian upper bounds. Our self-adjoint operators include the Dirichlet Laplacian on an open set, Robin Laplacian on an exterior domain, and Schrodinger operators, etc.
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The
We study local-time well-posedness and breakdown for solutions of regularized Saint-Venant equations (regularized classical shallow water equations) recently introduced by Clamond and Dutykh. The system is linearly non-dispersive, and smooth solution
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential
We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation $u = Lu + f(u)$ in $L^p(X,m)$ for $p in [1,infty)$, where $(X,m)$ is a $sigma$-finite measure space, $L$ is t