ترغب بنشر مسار تعليمي؟ اضغط هنا

Global well-posedness, dissipation and blow up for semilinear heat equations in energy spaces associated with self-adjoint operators

68   0   0.0 ( 0 )
 نشر من قبل Koichi Taniguchi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose in this paper is to determine the global behavior of solutions to the initial-boundary value problems for energy-subcritical and critical semilinear heat equations by initial data with lower energy than the mountain pass level in energy spaces associated with self-adjoint operators satisfying Gaussian upper bounds. Our self-adjoint operators include the Dirichlet Laplacian on an open set, Robin Laplacian on an exterior domain, and Schrodinger operators, etc.



قيم البحث

اقرأ أيضاً

81 - Jinkai Li 2019
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The initial density is required to be nonnegative, which is not necessary to be uniformly away from vacuum. This not only generalizes the well-known result of Kazhikhov--Shelukhin (Kazhikhov, A.~V.; Shelukhin, V.~V.: emph{Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas}, J.,Appl.,Math.,Mech., bf41 rm(1977), 273--282.) from the heat conductive case to the non-heat conductive case, and the initial vacuum is allowed.
We study local-time well-posedness and breakdown for solutions of regularized Saint-Venant equations (regularized classical shallow water equations) recently introduced by Clamond and Dutykh. The system is linearly non-dispersive, and smooth solution s conserve an $H^1$-equivalent energy. No shock discontinuities can occur, but the system is known to admit weakly singular shock-profile solutions that dissipate energy. We identify a class of small-energy smooth solutions that develop singularities in the first derivatives in finite time.
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp ace, it is known from Herrero and Pierre [20] that the Cauchy problem associated with the FDE is well posed for initial data that are merely in $ L^1_{mathrm{loc}} $. We establish here that such data still give rise to global solutions on general Riemannian manifolds. If, in addition, the radial Ricci curvature satisfies a suitable pointwise bound from below (possibly diverging to $-infty$ at spatial infinity), we prove that also uniqueness holds, for the same type of data, in the class of strong solutions. Besides, under the further assumption that the initial datum is in $L^2_{mathrm{loc}}$ and nonnegative, a minimal solution is shown to exist, and we are able to establish uniqueness of purely (nonnegative) distributional solutions, which to our knowledge was not known before even in the Euclidean space. The required curvature bound is in fact sharp, since on model manifolds it turns out to be equivalent to stochastic completeness, and it was shown in [13] that uniqueness for the FDE fails even in the class of bounded solutions on manifolds that are not stochastically complete. Qualitatively this amounts to asking that the curvature diverges at most quadratically at infinity. A crucial ingredient of the uniqueness result is the proof of nonexistence of distributional subsolutions to certain semilinear elliptic equations with power nonlinearities, of independent interest.
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $f(u)sim u^m$ as $uto 0,$ $m$ integer and $N(m-1)/4geq 2$, we show that the solution is global. Moreover, we obtain a decay estimates for large time for the nonlinear biharmonic heat equation as well as for the nonlinear heat equation. Our results extend to the nonlinear polyharmonic heat equation.
We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation $u = Lu + f(u)$ in $L^p(X,m)$ for $p in [1,infty)$, where $(X,m)$ is a $sigma$-finite measure space, $L$ is t he infinitesimal generator of a sub-Markovian strongly continuous semigroup of bounded linear operators in $L^p(X,m)$, and $f$ is a strictly increasing, convex, continuous function on $[0,infty)$ with $f(0) = 0$ and $int_1^infty 1/f < infty$. Since we make no further assumptions on the behaviour of the diffusion, our main result can be seen as being about the competition between the diffusion represented by $L$ and the reaction represented by $f$ in a general setting. We apply our result to Laplacians on manifolds, graphs, and, more generally, metric measure spaces with a heat kernel. In the process, we recover and extend some older as well as recent results in a unified framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا