ترغب بنشر مسار تعليمي؟ اضغط هنا

Double Helical Conformation and Extreme Rigidity in a Rodlike Polyelectrolyte

144   0   0.0 ( 0 )
 نشر من قبل Rui Qiao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we describe a double helical conformation in the densely charged aromatic polyamide poly(2,2-disulfonyl-4,4-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of new 1D-reinforced composites.



قيم البحث

اقرأ أيضاً

152 - Franc{c}ois Boue 2012
We study by Small Angle Neutron Scattering (SANS) the structure of Hyaluronan -Lysozyme complexes. Hyaluronan (HA) is a polysaccharide of 9 nm intrinsic persistence length that bears one negative charge per disaccharide monomer (Mmol = 401.3 g/mol); two molecular weights, Mw = 6000 and 500 000 Da were used. The pH was adjusted at 4.7 and 7.4 so that lysozyme has a global charge of +10 and + 8 respectively. The lysozyme concentration was varied from 3 to 40 g/L, at constant HA concentration (10 g/L). At low protein concentration, samples are monophasic and SANS experiments reveal only fluctuations of concentration although, at high protein concentration, clusters are observed by SANS in the dense phase of the diphasic samples. In between, close to the onset of the phase separation, a distinct original scattering is observed. It is characteristic of a rod-like shape, which could characterize single complexes involving one or a few polymer chains. For the large molecular weight (500 000) the rodlike rigid domains extend to much larger length scale than the persistence length of the HA chain alone in solution and the range of the SANS investigation. They can be described as a necklace of proteins attached along a backbone of diameter one or a few HA chains. For the short chains (Mw ~ 6000), the rod length of the complexes is close to the chain contour length (~ 15 nm).
Tunable mechanics and fracture resistance are hallmarks of biological tissues and highly desired in engineered materials. To elucidate the underlying mechanisms, we study a rigidly percolating double network (DN) made of a stiff and a flexible networ k. The DN shows remarkable tunability in mechanical response when the stiff network is just above its rigidity percolation threshold and minimal changes far from this threshold. Further, the DN can be modulated to either be extensible, breaking gradually, or stronger, breaking in a more brittle fashion by varying the flexible networks concentration.
We present a quantitative analysis on the response of a dilute active suspension of self-propelled rods (swimmers) in a planar channel subjected to an imposed shear flow. To best capture the salient features of shear-induced effects, we consider the case of an imposed Couette flow, providing a constant shear rate across the channel. We argue that the steady-state behavior of swimmers can be understood in the light of a population splitting phenomenon, occurring as the shear rate exceeds a certain threshold, initiating the reversal of swimming direction for a finite fraction of swimmers from down- to upstream or vice versa, depending on swimmer position within the channel. Swimmers thus split into two distinct, statistically significant and oppositely swimming majority and minority populations. The onset of population splitting translates into a transition from a self-propulsion-dominated regime to a shear-dominated regime, corresponding to a unimodal-to-bimodal change in the probability distribution function of the swimmer orientation. We present a phase diagram in terms of the swim and flow Peclet numbers showing the separation of these two regimes by a discontinuous transition line. Our results shed further light on the behavior of swimmers in a shear flow and provide an explanation for the previously reported non-monotonic behavior of the mean, near-wall, parallel-to-flow orientation of swimmers with increasing shear strength.
We analyse the dynamics of different routes to collapse of a constrained polyelectrolyte gel in contact with an ionic bath. The evolution of the gel is described by a model that incorporates non-linear elasticity, Stefan-Maxwell diffusion and interfa cial gradient free energy to account for phase separation of the gel. A bifurcation analysis of the homogeneous equilibrium states reveals three solution branches at low ion concentrations in the bath, giving way to only one above a critical ion concentration. We present numerical solutions that capture both the spatial heterogeneity and the multiple time-scales involved in the process of collapse. These solutions are complemented by two analytical studies. Firstly, a phase-plane analysis that reveals the existence of a depletion front for the transition from the highly swollen to the new collapsed equilibrium state. This depletion front is initiated after the fast ionic diffusion has set the initial condition for this time regime. Secondly, we perform a linear stability analysis about the homogeneous states that show that for a range of ion concentrations in the bath, spinodal decomposition of the swollen state gives rise to localized solvent-rich(poor) and, due to the electro-neutrality condition, ion-poor(rich) phases that coarsen on the route to collapse. This dynamics of a collapsing polyelectrolyte gel has not been described before.
The transport of polyelectrolytes confined by oppositely charged surfaces and driven by a constant electric field is of interest in studies of DNA separation according to size. Using molecular dynamics simulations that include surface polarization ef fect, we find that the mobilities of the polyelectrolytes and their counterions change non-monotonically with the confinement surface charge density. For an optimum value of the confinement charge density, efficient separation of polyelectrolytes can be achieved over a wide range of polyelectrolyte charge due to the differential friction imparted by the oppositely charged confinement on the polyelectrolyte chains. Furthermore, by altering the placement of the charged confinement counterions, enhanced polyelectrolyte separation can be achieved by utilizing surface polarization effect due to dielectric mismatch between the media inside and outside the confinement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا