ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback Stabilization of the Two-Dimensional Navier-Stokes Equations by Value Function Approximation

176   0   0.0 ( 0 )
 نشر من قبل Laurent Pfeiffer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The value function associated with an optimal control problem subject to the Navier-Stokes equations in dimension two is analyzed. Its smoothness is established around a steady state, moreover, its derivatives are shown to satisfy a Riccati equation at the order two and generalized Lyapunov equations at the higher orders. An approximation of the optimal feedback law is then derived from the Taylor expansion of the value function. A convergence rate for the resulting controls and closed-loop systems is demonstrated.



قيم البحث

اقرأ أيضاً

The approximation of the value function associated to a stabilization problem formulated as optimal control problem for the Navier-Stokes equations in dimension three by means of solutions to generalized Lyapunov equations is proposed and analyzed. T he specificity, that the value function is not differentiable on the state space must be overcome. For this purpose a new class of generalized Lyapunov equations is introduced. Existence of unique solutions to these equations is demonstrated. They provide the basis for feedback operators, which approximate the value function, the optimal states and controls, up to arbitrary order.
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.
Consider the anisotropic Navier-Stokes equations as well as the primitive equations. It is shown that the horizontal velocity of the solution to the anisotropic Navier-Stokes equations in a cylindrical domain of height $varepsilon $ with initial data $u_0=(v_0,w_0)in B^{2-2/p}_{q,p}$, $1/q+1/ple 1$ if $qge 2$ and $4/3q+2/3ple 1$ if $qle 2$, converges as $varepsilon to 0$ with convergence rate $mathcal{O} (varepsilon )$ to the horizontal velocity of the solution to the primitive equations with initial data $v_0$ with respect to the maximal-$L^p$-$L^q$-regularity norm. Since the difference of the corresponding vertical velocities remains bounded with respect to that norm, the convergence result yields a rigorous justification of the hydrostatic approximation in the primitive equations in this setting. It generalizes in particular a result by Li and Titi for the $L^2$-$L^2$-setting. The approach presented here does not rely on second order energy estimates but on maximal $L^p$-$L^q$-estimates for the heat equation.
In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal viscosity regime. Setting $varepsilon >0$ to be the small aspect ratio of the vertical to the horizontal scales of the domain, we investigate the case when the horizontal and vertical viscosities in the incompressible three-dimensional Navier-Stokes equations are of orders $O(1)$ and $O(varepsilon^alpha)$, respectively, with $alpha>2$, for which the limiting system is the primitive equations with only horizontal viscosity as $varepsilon$ tends to zero. In particular we show that for well prepared initial data the solutions of the scaled incompressible three-dimensional Navier-Stokes equations converge strongly, in any finite interval of time, to the corresponding solutions of the anisotropic primitive equations with only horizontal viscosities, as $varepsilon$ tends to zero, and that the convergence rate is of order $Oleft(varepsilon^fracbeta2right)$, where $beta=min{alpha-2,2}$. Note that this result is different from the case $alpha=2$ studied in [Li, J.; Titi, E.S.: emph{The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: Rigorous justification of the hydrostatic approximation}, J. Math. Pures Appl., textbf{124} rm(2019), 30--58], where the limiting system is the primitive equations with full viscosities and the convergence is globally in time and its rate of order $Oleft(varepsilonright)$.
We propose an approach for the synthesis of robust and optimal feedback controllers for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control systems by a pseudospectral collocation method, leading to high-dimension al nonlinear dynamics. For the reduced-order model, we construct a robust feedback control based on the $cH_{infty}$ control method, which requires the solution of an associated high-dimensional Hamilton-Jacobi-Isaacs nonlinear PDE. The dimensionality of the Isaacs PDE is tackled by means of a separable representation of the control system, and a polynomial approximation ansatz for the corresponding value function. Our method proves to be effective for the robust stabilization of nonlinear dynamics up to dimension $dapprox 12$. We assess the robustness and optimality features of our design over a class of nonlinear parabolic PDEs, including nonlinear advection and reaction terms. The proposed design yields a feedback controller achieving optimal stabilization and disturbance rejection properties, along with providing a modelling framework for the robust control of PDEs under parametric uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا