ﻻ يوجد ملخص باللغة العربية
High-resolution optical spectroscopy is a powerful tool to characterise exoplanetary atmospheres from the ground. The sodium D lines, with their large cross sections, are especially suited to study the upper layers of atmospheres in this context. We report on the results from HEARTS, a spectroscopic survey of exoplanet atmospheres, performing a comparative study of hot gas giants to determine the effects of stellar irradiation. In this second installation of the series, we highlight the detection of neutral sodium on the ultra-hot giant WASP-76b. We observed three transits of the planet using the HARPS high-resolution spectrograph at the ESO 3.6m telescope and collected 175 spectra of WASP-76. We repeatedly detect the absorption signature of neutral sodium in the planet atmosphere ($0.371pm0.034%$; $10.75 sigma$ in a $0.75$ r{A} passband). The sodium lines have a Gaussian profile with full width at half maximum (FWHM) of $27.6pm2.8$ km s$^{-1}$. This is significantly broader than the line spread function of HARPS ($2.7$ km s$^{-1}$). We surmise that the observed broadening could trace the super-rotation in the upper atmosphere of this ultra-hot gas giant.
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot
Planet formation processes or evolution mechanisms are surmised to be at the origin of the hot Neptune desert. Studying exoplanets currently living within or at the edge of this desert could allow disentangling the respective roles of formation and e
WASP-127b is one of the puffiest exoplanets found to date, with a mass only $3.4$ Neptune masses, but a radius larger than Jupiter. It is also located at the border of the Neptune desert, which describes the lack of highly-irradiated Neptune-sized pl
Aims: We survey the transmission spectrum of WASP-121 b for line-absorption by metals and molecules at high spectral resolution, and elaborate on existing interpretations of the optical transmission spectrum observed with HST/STIS and WFC3. Methods:
Ultra-hot Jupiters with equilibrium temperature greater than 2000K are uniquely interesting targets as they provide us crucial insights into how atmospheres behave under extreme conditions. This class of giant planets receives intense radiation from