ترغب بنشر مسار تعليمي؟ اضغط هنا

2900 square degree search for the optical counterpart of short gamma-ray burst GRB 180523B with the Zwicky Transient Facility

85   0   0.0 ( 0 )
 نشر من قبل Michael Coughlin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is significant interest in the models for production of short gamma-ray bursts. Until now, the number of known short gamma-ray bursts with multi-wavelength afterglows has been small. While the {it Fermi} Gamma-Ray Burst Monitor detects many gamma-ray bursts relative to the Neil Gehrels {it Swift} Observatory, the large localization regions makes the search for counterparts difficult. With the Zwicky Transient Facility recently achieving first light, it is now fruitful to use its combination of depth ($m_textrm{AB} sim 20.6$), field of view ($approx$ 47 square degrees), and survey cadence (every $sim 3$ days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B, which was recently announced by the {it Fermi} Gamma-Ray Burst Monitor as a short gamma-ray burst. ZTF imaged $approx$ 2900,square degrees of the localization region, resulting in the coverage of 61.6,% of the enclosed probability over 2 nights to a depth of $m_textrm{AB} sim 20.5$. We characterized 14 previously unidentified transients, and none were found to be consistent with a short gamma-ray burst counterpart. This search with the Zwicky Transient Facility shows it is an efficient camera for searching for coarsely-localized short gamma-ray burst and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption to its nominal cadence.

قيم البحث

اقرأ أيضاً

The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found during optical surveys of the sky, independent of gravitational-wa ve triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded $>11,200$ candidates, 24 of which passed quality checks and strict selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting, catalog cross-matching, and study of their color evolution. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. In addition, we identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB190106A, and the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat and linearly decaying light curves and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be $R < 1775$ Gpc$^{-3}$ yr$^{-1}$ at 95% confidence level by requiring at least 2 high-significance detections. By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of $R < 4029$ Gpc$^{-3}$ yr$^{-1}$.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than ~2 s), which ultimately linked them with energ etic Type Ic supernovae, came from the discovery of their long-lived X-ray and optical afterglows, when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude ~23) associated with a short burst; GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.
The coincident detection of GW170817 in gravitational waves and electromagnetic radiation spanning the radio to MeV gamma-ray bands provided the first direct evidence that short gamma-ray bursts (GRBs) can originate from binary neutron star (BNS) mer gers. On the other hand, the properties of short GRBs in high-energy gamma rays are still poorly constrained, with only $sim$20 events detected in the GeV band, and none in the TeV band. GRB~160821B is one of the nearest short GRBs known at $z=0.162$. Recent analyses of the multiwavelength observational data of its afterglow emission revealed an optical-infrared kilonova component, characteristic of heavy-element nucleosynthesis in a BNS merger. Aiming to better clarify the nature of short GRBs, this burst was automatically followed up with the MAGIC telescopes, starting from 24 seconds after the burst trigger. Evidence of a gamma-ray signal is found above $sim$0.5 TeV at a significance of $sim3,sigma$ during observations that lasted until 4 hours after the burst. Assuming that the observed excess events correspond to gamma-ray emission from GRB 160821B, in conjunction with data at other wavelengths, we investigate its origin in the framework of GRB afterglow models. The simplest interpretation with one-zone models of synchrotron-self-Compton emission from the external forward shock has difficulty accounting for the putative TeV flux. Alternative scenarios are discussed where the TeV emission can be relatively enhanced. The role of future GeV-TeV observations of short GRBs in advancing our understanding of BNS mergers and related topics is briefly addressed.
88 - Anna Y. Q. Ho 2020
We present ZTF20aajnksq (AT2020blt), a fast-fading ($Delta r=2.4$ mag in $Delta t=1.3$ days) red ($g-rapprox0.6$ mag) and luminous ($M_{1626}=-25.9$) optical transient at $z=2.9$ discovered by the Zwicky Transient Facility (ZTF). AT2020blt shares sev eral features in common with afterglows to long-duration gamma-ray bursts (GRBs): (1) an optical light curve well-described by a broken power-law with a break at $t_mathrm{j}=1$ day (observer-frame); (2) a luminous $(L_X = 10^{46}$ $mathrm{erg}$ $mathrm{s}^{-1})$ X-ray counterpart; and (3) luminous ($L_ u = 4 times 10^{31}$ $mathrm{erg}$ $mathrm{sec}^{-1}$ $mathrm{Hz}^{-1}$ at 10 GHz) radio emission. However, no GRB was detected in the 0.74d between the last ZTF non-detection ($r > 20.64$) and the first ZTF detection ($r = 19.57$), with an upper limit on the isotropic-equivalent gamma-ray energy release of $E_{gamma,mathrm{iso}} < 7 times 10^{52}$ erg. AT2020blt is thus the third afterglow-like transient discovered without a detected GRB counterpart (after PTF11agg and ZTF19abvizsw) and the second (after ZTF19abvizsw) with a redshift measurement. We conclude that the properties of AT2020blt are consistent with a classical (initial Lorentz factor $Gamma_0 gtrsim 100$) on-axis GRB that was missed by high-energy satellites. Furthermore, by estimating the rate of transients with light curves similar to that of AT2020blt in ZTF high-cadence data, we agree with previous results that there is no evidence for an afterglow-like phenomenon that is significantly more common than classical GRBs. We conclude by discussing the status and future of fast-transient searches in wide-field high-cadence optical surveys.
AM CVn systems are a rare type of accreting binary that consists of a white dwarf and a helium-rich, degenerate donor star. Using the Zwicky Transient Facility (ZTF), we searched for new AM CVn systems by focusing on blue, outbursting stars. We first selected outbursting stars using the ZTF alerts. We cross-matched the candidates with $Gaia$ and Pan-STARRS catalogs. The initial selection of candidates based on the $Gaia$ $BP$-$RP$ contains 1751 unknown objects. We used the Pan-STARRS $g$-$r$ and $r$-$i$ color in combination with the $Gaia$ color to identify 59 high-priority candidates. We obtained identification spectra of 35 sources, of which 18 are high priority candidates, and discovered 9 new AM CVn systems and one magnetic CV which shows only He-II lines. Using the outburst recurrence time, we estimate the orbital periods which are in the range of 29 to 50 minutes. We conclude that targeted followup of blue, outbursting sources is an efficient method to find new AM CVn systems, and we plan to followup all candidates we identified to systematically study the population of outbursting AM CVn systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا