ﻻ يوجد ملخص باللغة العربية
Recent imaging observations with the Interface Region Imaging Spectrograp (IRIS) have revealed prevalent intermittent jets with apparent speeds of 80--250 km~s$^{-1}$ from the network lanes in the solar transition region (TR). On the other hand, spectroscopic observations of the TR lines have revealed the frequent presence of highly non-Gaussian line profiles with enhanced emission at the line wings, often referred as explosive events (EEs). Using simultaneous imaging and spectroscopic observations from IRIS, we investigate the relationship between EEs and network jets. We first identify EEs from the Si~{sc{iv}}~1393.755 {AA} line profiles in our observations, then examine related features in the 1330 {AA} slit-jaw images. Our analysis suggests that EEs with double peaks or enhancements in both wings appear to be located at either the footpoints of network jets, or transient compact brightenings. These EEs are most likely produced by magnetic reconnection. We also find that EEs with enhancements only at the blue wing are mainly located on network jets, away from the footpoints. These EEs clearly result from the superposition of the high-speed network jets on the TR background. In addition, EEs showing enhancement only at the red wing of the line are often located around the jet footpoints, possibly caused by the superposition of reconnection downflows on the background emission. Moreover, we find some network jets that are not associated with any detectable EEs. Our analysis suggests that some EEs are related to the birth or propagation of network jets, and that others are not connected to network jets.
The relationships among coronal loop structures at different temperatures is not settled. Previous studies have suggested that coronal loops in the core of an active region are not seen cooling through lower temperatures and therefore are steadily he
Both coronal plumes and network jets are rooted in network lanes. The relationship between the two, however, has yet to be addressed. For this purpose, we perform an observational analysis using images acquired with the Atmospheric Imaging Assembly (
In the last 30 years, the existence of small and cool magnetic loops (height < 8 Mm, T < 10^5 K) has been proposed and debated to explain the increase of the DEM (differential emission measure) towards the chromosphere. We present hydrodynamic simula
It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have shown that in the solar corona low-FIP elements, such as Fe, Si, Mg, and Ca,
We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations fro