ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the First Low-Luminosity Quasar at z > 7

92   0   0.0 ( 0 )
 نشر من قبل Yoshiki Matsuoka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric luminosity is Lbol = (1.4 +/- 0.1) x 10^{46} erg/s. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C IV line is blueshifted and there is indication of broad absorption lines. The Mg II-based black hole mass is Mbh = (3.3 +/- 2.0) x 10^8 Msun, thus indicating a moderate mass accretion rate with an Eddington ratio 0.34 +/- 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar, known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe.


قيم البحث

اقرأ أيضاً

In this paper, we provide updated constraints on the bolometric quasar luminosity function (QLF) from $z=0$ to $z=7$. The constraints are based on an observational compilation that includes observations in the rest-frame IR, B band, UV, soft and hard X-ray in past decades. Our method follows Hopkins et al. 2007 with an updated quasar SED model and bolometric and extinction corrections. The new best-fit bolometric quasar luminosity function behaves qualitatively different from the Hopkins et al. 2007 model at high redshift. Compared with the old model, the number density normalization decreases towards higher redshift and the bright-end slope is steeper at $zgtrsim 2$. Due to the paucity of measurements at the faint end, the faint end slope at $zgtrsim 5$ is quite uncertain. We present two models, one featuring a progressively steeper faint-end slope at higher redshift and the other featuring a shallow faint-end slope at $zgtrsim 5$. Further multi-band observations of the faint-end QLF are needed to distinguish between these models. The evolutionary pattern of the bolometric QLF can be interpreted as an early phase likely dominated by the hierarchical assembly of structures and a late phase likely dominated by the quenching of galaxies. We explore the implications of this model on the ionizing photon production by quasars, the CXB spectrum, the SMBH mass density and mass functions. The predicted hydrogen photoionization rate contributed by quasars is subdominant during the epoch of reionization and only becomes important at $zlesssim 3$. The predicted CXB spectrum, cosmic SMBH mass density and SMBH mass function are generally consistent with existing observations.
Strong gravitational lensing provides a powerful probe of the physical properties of quasars and their host galaxies. A high fraction of the most luminous high-redshift quasars was predicted to be lensed due to magnification bias. However, no multipl e imaged quasar was found at z>5 in previous surveys. We report the discovery of J043947.08+163415.7, a strongly lensed quasar at z=6.51, the first such object detected at the epoch of reionization, and the brightest quasar yet known at z>5. High-resolution HST imaging reveals a multiple imaged system with a maximum image separation theta ~ 0.2, best explained by a model of three quasar images lensed by a low luminosity galaxy at z~0.7, with a magnification factor of ~50. The existence of this source suggests that a significant population of strongly lensed, high redshift quasars could have been missed by previous surveys, as standard color selection techniques would fail when the quasar color is contaminated by the lensing galaxy.
We present new measurements of the quasar luminosity function (LF) at $z sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Su baru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 le z le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $alpha = -1.23^{+0.44}_{-0.34}$, a bright-end slope $beta = -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Phi^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $dot{n}_{rm ion} = 10^{48.8 pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
We present deep Keck/MOSFIRE near-infrared spectroscopy of a strong Lyman alpha emitting source at z=6.1292, HSC J142331.71-001809.1, which was discovered by the SHELLQS program from imaging data of the Subaru Hyper Suprime-Cam (HSC) survey. This sou rce is one of five objects that show unresolved (<230 km s-1) and prominent (>10^44 erg s-1) Lyman alpha emission lines at absolute 1450 angstrom continuum magnitudes of M1450~-22 mag. Its rest-frame Lyman alpha equivalent width (EW) is 370+/-30 angstrom. In the 2 hour Keck/MOSFIRE spectrum in Y band, the high-ionization CIV 1548,1550 doublet emission line was clearly detected with FWHM =120+/-20 km s-1 and a total rest-frame EW of 37-5+6 angstrom. We also report the detection of weak continuum emission, and the tentative detection of OIII] 1661,1666 in the 4 hour J band spectrum. Judging from the UV magnitude, line widths, luminosities, and EWs of Lyman alpha and CIV, we suggest that this source is a reionization-era analog of classical type-II AGNs, although there is a possibility that it represents a new population of AGN/galaxy composite objects in the early universe. We compare the properties of J1423-0018 to intermediate-redshift type-II AGNs and CIV emitters seen in z=6-7 galaxy samples. Further observations of other metal emission lines in the rest-frame UV or optical, and X-ray follow-up observations of the z=6-7 narrow-line quasars are needed for more robust diagnostics and to determine their nature.
We present measurements of the size of the quasar proximity zone ($R_p$) for eleven low-luminosity ($-26.16leq M_{1450}leq-22.83$) quasars at $zsim6$, discovered by the Subaru High-$z$ Exploration of Low-Luminosity Quasars project (SHELLQs). Our fain t quasar sample expands the $R_p$ measurement down to $M_{1450}=-22.83$ mag, where more common quasar populations dominate at the epoch. We restrict the sample to quasars whose systemic redshifts have been precisely measured by [CII] 158 $mu$m or MgII $lambda$2798 emission lines. We also update the $R_p$ measurements for 26 luminous quasars presented in Eilers et al. (2017)(arXiv:1703.02539) by using the latest systemic redshift results. The luminosity dependence on $R_p$ is found to be consistent with the theoretical prediction assuming highly ionized intergalactic medium. We find a shallow redshift evolution of the luminosity-corrected $R_p$, $R_{p,{rm corr}}^{-25}$ ($R_{p, rm corr}^{-25}propto(1+z)^{-3.79pm1.72}$) over $5.8lesssim z lesssim6.6$. This trend is steeper than that of Eilers et al. (2017) but significantly shallower than those of the earlier studies. Our results suggest that $R_{p,rm corr}$ is insensitive to the neutral fraction of the universe at $zsim6$. Four quasars show exceptionally small $R_{p,rm corr}^{-25}$ ($ lesssim0.90$ proper Mpc), which could be the result of their young age ($<10^4$ yr) in the reionization epoch, though statistics is still small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا