ﻻ يوجد ملخص باللغة العربية
Is matching in NC, i.e., is there a deterministic fast parallel algorithm for it? This has been an outstanding open question in TCS for over three decades, ever since the discovery of randomized NC matching algorithms [KUW85, MVV87]. Over the last five years, the theoretical computer science community has launched a relentless attack on this question, leading to the discovery of several powerful ideas. We give what appears to be the culmination of this line of work: An NC algorithm for finding a minimum-weight perfect matching in a general graph with polynomially bounded edge weights, provided it is given an oracle for the decision problem. Consequently, for settling the main open problem, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact has qualitatively changed the nature of this open problem. All known efficient matching algorithms for general graphs follow one of two approaches: given by Edmonds [Edm65] and Lovasz [Lov79]. Our oracle-based algorithm follows a new approach and uses many of the ideas discovered in the last five years. The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching vis-a-vis clever relaxations of the class NC. In this vein, recently Goldwasser and Grossman [GG15] gave a pseudo-deterministic RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the additional requirement that on the same graph, it should return the same (i.e., unique) perfect matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm for general graphs.
We investigate the single source shortest distance (SSSD) and all pairs shortest distance (APSD) problems as enumeration problems (on unweighted and integer weighted graphs), meaning that the elements $(u, v, d(u, v))$ -- where $u$ and $v$ are vertic
Consider a planar graph $G=(V,E)$ with polynomially bounded edge weight function $w:Eto [0, poly(n)]$. The main results of this paper are NC algorithms for the following problems: - minimum weight perfect matching in $G$, - maximum cardinality an
Suppose that we are given an arbitrary graph $G=(V, E)$ and know that each edge in $E$ is going to be realized independently with some probability $p$. The goal in the stochastic matching problem is to pick a sparse subgraph $Q$ of $G$ such that the
We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of the $n$ nodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e., the initial state of the s
Stochastic compositional optimization generalizes classic (non-compositional) stochastic optimization to the minimization of compositions of functions. Each composition may introduce an additional expectation. The series of expectations may be nested