ﻻ يوجد ملخص باللغة العربية
Weyl semimetals exhibit exceptional quantum electronic transport due to the presence of topologically-protected band crossings called Weyl nodes. The nodes come in pairs with opposite chirality, but their number and location in momentum space is otherwise material specific. Following the initial discoveries there is now a need for better material realizations, ideally comprising a single pair of Weyl nodes located at or very close to the Fermi level and in an energy window free from other overlapping bands. Here we propose the layered intermetallic EuCd$_2$As$_2$ to be such a system. We show that Weyl nodes in EuCd$_2$As$_2$ are magnetically-induced via exchange coupling, emerging when the Eu spins are aligned by a small external magnetic field. The identification of EuCd$_2$As$_2$ as a model magnetic Weyl semimetal, evidenced here by ab initio calculations, photoemission spectroscopy, quantum oscillations and anomalous Hall transport measurements, opens the door to fundamental tests of Weyl physics.
Magnetic Weyl semimetals (WSMs) bearing long-time pursuing are still very rare. We herein identified magnetic exchange induced Weyl state in EuCd2Sb2, a semimetal in type IV magnetic space group, via performing high magnetic field (B) magneto-transpo
We study magneto-transport properties in single crystals of TaSb_2, which is a recently discovered topological semimetal. In the presence of magnetic field, the electrical resistivity shows onset of insulating behaviour followed by plateau at low tem
We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-$vec{k}$ magnetic phases below $T_{rm{N}}$. The to
We study a layered three-dimensional heterostructure in which two types of Kondo insulators are stacked alternatingly. One of them is the topological Kondo insulator SmB 6 , the other one an isostructural Kondo insulator AB 6 , where A is a rare-eart
We study the current-induced torques in asymmetric magnetic tunnel junctions containing a conventional ferromagnet and a magnetic Weyl semimetal contact. The Weyl semimetal hosts chiral bulk states and topologically protected Fermi arc surface states