ﻻ يوجد ملخص باللغة العربية
We revisit the brick wall model for black hole entropy taking into account back-reaction effects on the horizon structure. We do so by adopting an evaporating metric in the quasi-static approximation in which departures from the standard Schwarzschild metric are governed by a small luminosity factor. One of the effects of the back-reaction is to create an ergosphere-like region which naturally tames the usual divergence in the calculation of the partition function of the field. The black hole luminosity sets the width of such quantum ergosphere. We find a finite horizon contribution to the entropy which, for the luminosity associated to the Hawking flux, agrees remarkably well with the Bekenstein-Hawking relation.
We discuss the statistical-mechanical entropy of black hole calculated according to t Hooft. It is argued that in presence of horizon the statistical mechanics of quantum fields depends on their UV behavior. The ``brick wall model was shown to provid
We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that t
Entanglement entropies calculated in the framework of quantum field theory on classical, flat or curved, spacetimes are known to show an intriguing area law in four dimensions, but they are also notorious for their quadratic ultraviolet divergences.
A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then
The quantum states or Hilbert spaces for the quantum field theory in de Sitter space-time are studied on ambient space formalism. In this formalism, the quantum states are only depended $(1)$ on the topological character of the de Sitter space-time,