ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the Demand and Uncertainty of Low Voltage Networks and the Effect of non-Domestic Consumers

195   0   0.0 ( 0 )
 نشر من قبل Georgios Giasemidis Dr
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing use and spread of low carbon technologies are expected to cause new patterns in electric demand and set novel challenges to a distribution network operator (DNO). In this study, we build upon a recently introduced method, called buddying, which simulates low voltage (LV) networks of both residential and non-domestic (e.g. shops, offices, schools, hospitals, etc.) customers through optimization (via a genetic algorithm) of demands based on limited monitored and customer data. The algorithm assigns a limited but diverse number of monitored households (the buddies) to the unmonitored customers on a network. We study and compare two algorithms, one where substation monitoring data is available and a second where no substation information is used. Despite the roll out of monitoring equipment at domestic properties and/or substations, less data is available for commercial customers. This study focuses on substations with commercial customers most of which have no monitored `buddy, in which case a profile must be created. Due to the volatile nature of the low voltage networks, uncertainty bounds are crucial for operational purposes. We introduce and demonstrate two techniques for modelling the confidence bounds on the modelled LV networks. The first method uses probabilistic forecast methods based on substation monitoring; the second only uses a simple bootstrap of the sample of monitored customers but has the advantage of not requiring monitoring at the substation. These modelling tools, buddying and uncertainty bounds, can give further insight to a DNO to better plan and manage the network when limited information is available.



قيم البحث

اقرأ أيضاً

Distribution network operators (DNOs) are increasingly concerned about the impact of low carbon technologies on the low voltage (LV) networks. More advanced metering infrastructures provide numerous opportunities for more accurate load flow analysis of the LV networks. However, such data may not be readily available for DNOs and in any case is likely to be expensive. Modelling tools are required which can provide realistic, yet accurate, load profiles as input for a network modelling tool, without needing access to large amounts of monitored customer data. In this paper we outline some simple methods for accurately modelling a large number of unmonitored residential customers at the LV level. We do this by a process we call buddying, which models unmonitored customers by assigning them load profiles from a limited sample of monitored customers who have smart meters. Hence the presented method requires access to only a relatively small amount of domestic customers data. The method is efficiently optimised using a genetic algorithm to minimise a weighted cost function between matching the substation data and the individual mean daily demands. Hence we can show the effectiveness of substation monitoring in LV network modelling. Using real LV network modelling, we show that our methods perform significantly better than a comparative Monte Carlo approach, and provide a description of the peak demand behaviour.
Short term load forecasts will play a key role in the implementation of smart electricity grids. They are required to optimise a wide range of potential network solutions on the low voltage (LV) grid, including integrating low carbon technologies (su ch as photovoltaics) and utilising battery storage devices. Despite the need for accurate LV level load forecasts, previous studies have mostly focused on forecasting at the individual household or building level using data from smart meters. In this study we provide detailed analysis of a variety of methods in terms of both point and probabilistic forecasting accuracy using data from 100 real LV feeders. Moreover, we investigate the effect of temperature (both actual and forecasts) on the accuracy of load forecasts. We present some important results on the drivers of LV forecasting accuracy that are crucial for the management of LV networks, along with an empirical comparison of forecast measures.
We present a model for generating probabilistic forecasts by combining kernel density estimation (KDE) and quantile regression techniques, as part of the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014. The KDE method is initially implemented with a time-decay parameter. We later improve this method by conditioning on the temperature or the period of the week variables to provide more accurate forecasts. Secondly, we develop a simple but effective quantile regression forecast. The novel aspects of our methodology are two-fold. First, we introduce symmetry into the time-decay parameter of the kernel density estimation based forecast. Secondly we combine three probabilistic forecasts with different weights for different periods of the month.
In several recent publications, Bettencourt, West and collaborators claim that properties of cities such as gross economic production, personal income, numbers of patents filed, number of crimes committed, etc., show super-linear power-scaling with t otal population, while measures of resource use show sub-linear power-law scaling. Re-analysis of the gross economic production and personal income for cities in the United States, however, shows that the data cannot distinguish between power laws and other functional forms, including logarithmic growth, and that size predicts relatively little of the variation between cities. The striking appearance of scaling in previous work is largely artifact of using extensive quantities (city-wide totals) rather than intensive ones (per-capita rates). The remaining dependence of productivity on city size is explained by concentration of specialist service industries, with high value-added per worker, in larger cities, in accordance with the long-standing economic notion of the hierarchy of central places.
The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: For to all those who have, more will be given. Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamic s of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew rich get richer effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his/her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect, and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals, and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا