ترغب بنشر مسار تعليمي؟ اضغط هنا

Configuration entropy of the Cosmic Web: Can voids mimic the dark energy?

324   0   0.0 ( 0 )
 نشر من قبل Biswajit Pandey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Biswajit Pandey




اسأل ChatGPT حول البحث

We propose an alternative physical mechanism to explain the observed accelerated expansion of the Universe based on the configuration entropy of the cosmic web and its evolution. We show that the sheets, filaments and clusters in the cosmic web act as sinks whereas the voids act as the sources of information. The differential entropy of the cosmic velocity field increases with time and also acts as a source of entropy. The growth of non-linear structures and the emergence of the cosmic web may lead to a situation where the overall dissipation rate of information at the sinks are about to dominate the generation rate of information from the sources. Consequently, the Universe either requires a dispersal of the overdense non-linear structures or an accelerated expansion of the underdense voids to prevent a violation of the second law of thermodynamics. The dispersal of the sheets, filaments and clusters are not a viable option due to the attractive nature of gravity but the repulsive and outward peculiar gravitational acceleration at the voids makes it easier to stretch them at an accelerated rate. We argue that this accelerated expansion of the voids inside the cosmic web may mimic the behaviour of dark energy.

قيم البحث

اقرأ أيضاً

We propose a new scheme for constraining the dark energy equation of state parameter/parameters based on the study of the evolution of the configuration entropy. We analyze a set of one parameter and two parameter dynamical dark energy models and fin d that the derivative of the configuration entropy in all the dynamical dark energy models exhibit a minimum. The magnitude of the minimum of the entropy rate is decided by both the parametrization of the equation of state as well as the associated parameters. The location of the minimum of the entropy rate is less sensitive to the form of the parametrization but depends on the associated parameters. We determine the best fit equations for the location and magnitude of the minimum of the entropy rate in terms of the parameter/parameters of the dark energy equation of state. These relations would allow us to constrain the dark energy equation of state parameter/parameters for any given parametrization provided the evolution of the configuration entropy in the Universe is known from observations.
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do they represent a key constituent of the Cosmic Web, they also are one of the cleanest probes and measures of global cosmological parameters. The shape an d evolution of voids are highly sensitive to the nature of dark energy, while their substructure and galaxy population provides a direct key to the nature of dark matter. Also, the pristine environment of void interiors is an important testing ground for our understanding of environmental influences on galaxy formation and evolution. In this paper, we review the key aspects of the structure and dynamics of voids, with a particular focus on the hierarchical evolution of the void population. We demonstrate how the rich structural pattern of the Cosmic Web is related to the complex evolution and buildup of voids.
Taking N-body simulations with volumes and particle densities tuned to match the SDSS DR7 spectroscopic main sample, we assess the ability of current void catalogs (e.g., Sutter et al. 2012b) to distinguish a model of coupled dark matter-dark energy from {Lambda}CDM cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. (2013). In addition, we use the universal density profile of Hamaus et al. (2014) to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogs once effects from survey geometries and peculiar velocities are taken into account.
152 - Sultan Hassan 2020
Lyman-$alpha$ (Ly$alpha$) emitting galaxies are powerful tools to probe the late stages of cosmic reionization. The observed sudden drop in Ly$alpha$ fraction at $z>6$ is often interpreted as a sign of reionization, since the intergalactic medium (IG M) is more neutral and opaque to Ly$alpha$ photons. Crucially, this interpretation of the observations is only valid under the assumption that galaxies themselves experience a minimal evolution at these epochs. By modelling Ly$alpha$ radiative transfer effects in and around galaxies, we examine whether a change in the galactic properties can reproduce the observed drop in the Ly$alpha$ fraction. We find that an increase in the galactic neutral hydrogen content or a reduction in the outflow velocity toward higher redshift both lead to a lower Ly$alpha$ escape fraction, and can thus mimic an increasing neutral fraction of the IGM. We furthermore find that this change in galactic properties leads to systematically different Ly$alpha$ spectra which can be used to differentiate the two competing effects. Using the CANDELSz7 survey measurements which indicate slightly broader lines at $zsim 6$, we find that the scenario of a mere increase in the galactic column density towards higher $z$ is highly unlikely. We also show that a decrease in outflow velocity is not ruled out by existing data but leads to more prominent blue peaks at $z>6$. Our results caution the use of Ly$alpha$ observations to estimate the IGM neutral fraction without accounting for the potential change in the galactic properties, e.g., by mapping out the evolution of Ly$alpha$ spectral characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا