ﻻ يوجد ملخص باللغة العربية
We constrain the abundance of primordial black holes (PBH) using 2622 microlensing events obtained from 5-years observations of stars in the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE). The majority of microlensing events display a single or at least continuous population that has a peak around the light curve timescale $t_{rm E}simeq 20~{rm days}$ and a wide distribution over the range $t_{rm E}simeq [1, 300]~{rm days}$, while the data also indicates a second population of 6 ultrashort-timescale events in $t_{rm E}simeq [0.1,0.3]~{rm days}$, which are advocated to be due to free-floating planets. We confirm that the main population of OGLE events can be well modeled by microlensing due to brown dwarfs, main sequence stars and stellar remnants (white dwarfs and neutron stars) in the standard Galactic bulge and disk models for their spatial and velocity distributions. Using the dark matter (DM) model for the Milky Way (MW) halo relative to the Galactic bulge/disk models, we obtain the tightest upper bound on the PBH abundance in the mass range $M_{rm PBH}simeq[10^{-6},10^{-3}]M_odot$ (Earth-Jupiter mass range), if we employ null hypothesis that the OGLE data does not contain any PBH microlensing event. More interestingly, we also show that Earth-mass PBHs can well reproduce the 6 ultrashort-timescale events, without the need of free-floating planets, if the mass fraction of PBH to DM is at a per cent level, which is consistent with other constraints such as the microlensing search for Andromeda galaxy (M31) and the longer timescale OGLE events. Our result gives a hint of PBH existence, and can be confirmed or falsified by microlensing search for stars in M31, because M31 is towards the MW halo direction and should therefore contain a much less number of free-floating planets, even if exist, than the direction to the MW center.
It has recently been proposed that massive primordial black holes (PBH) could constitute all of the dark matter, providing a novel scenario of structure formation, with early reionization and a rapid growth of the massive black holes at the center of
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
Primordial black holes (PBHs) may form in the early stages of the Universe via the collapse of large density perturbations. Depending on the formation mechanism, PBHs may exist and populate today the galactic halos and have masses in a wide range, fr
Primordial black holes (PBHs) have long been suggested as a viable candidate for the elusive dark matter (DM). The abundance of such PBHs has been constrained using a number of astrophysical observations, except for a hitherto unexplored mass window
The detection of binary black hole coalescences by LIGO/Virgo has aroused the interest in primordial black holes (PBHs), because they could be both the progenitors of these black holes and a compelling candidate of dark matter (DM). PBHs are formed s