ﻻ يوجد ملخص باللغة العربية
Multiple space and time scales arise in plasma turbulence in magnetic confinement fusion devices because of the smallness of the square root of the electron-to-ion mass ratio $(m_e/m_i)^{1/2}$ and the consequent disparity of the ion and electron thermal gyroradii and thermal speeds. Direct simulations of this turbulence that include both ion and electron space-time scales indicate that there can be significant interactions between the two scales. The extreme computational expense and complexity of these direct simulations motivates the desire for reduced treatment. By exploiting the scale separation between ion and electron scales,and expanding the gyrokinetic equations for the turbulence in $(m_e/m_i)^{1/2}$, we derive such a reduced system of gyrokinetic equations that describes cross-scale interactions. The coupled gyrokinetic equations contain novel terms which provide candidate mechanisms for the observed cross-scale interaction. The electron scale turbulence experiences a modified drive due to gradients in the ion scale distribution function, and is advected by the ion scale $E times B$ drift, which varies in the direction parallel to the magnetic field line. The largest possible cross-scale term in the ion scale equations is sub-dominant in our $(m_e/m_i)^{1/2}$ expansion. Hence, in our model the ion scale turbulence evolves independently of the electron scale turbulence. To complete the scale-separated approach, we provide and justify a parallel boundary condition for the coupled gyrokinetic equations in axisymmetric equilibria based on the standard twist-and-shift boundary condition. This approach allows one to simulate multi-scale turbulence using electron scale flux tubes nested within an ion scale flux tube.
Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence mutually interact via the co
Radiative diagnostics of high-energy density plasmas is addressed in this paper. We propose that the radiation produced by energetic particles in small-scale magnetic field turbulence, which can occur in laser-plasma experiments, collisionless shocks
We show that zonal flow can be preferentially excited by intermediate-scale toroidal electron temperature gradient (ETG) turbulence in tokamak plasmas. Previous theoretical studies that yielded an opposite conclusion assumed a fluid approximation for
Turbulence plays a very important role in determining the transport of energy and particles in tokamaks. This work is devoted to studying the chaotic diffusion in multi-scale turbulence in the context of the nonlinear wave-particle interaction. Turbu
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale t