ﻻ يوجد ملخص باللغة العربية
Metal Evolution, Transport, and Abundance in the LMC (METAL) is a large Cycle 24 program on the Hubble Space Telescope aimed at measuring dust extinction properties and interstellar depletions in the Large Magellanic Cloud (LMC) at half-solar metallicity. The 101-orbit program is comprised of COS and STIS spectroscopy toward 33 LMC massive stars between 1150 A and 3180 A, and parallel WFC3 imaging in 7 NUV-NIR filters. The fraction of silicon in the gas-phase (depletion) obtained from the spectroscopy decreases with increasing hydrogen column density. Depletion patterns for silicon differ between the Milky Way, LMC, and SMC, with the silicon depletion level offsetting almost exactly the metallicity differences, leading to constant gas-phase abundances in those galaxies for a given hydrogen column density. The silicon depletion correlates linearly with the absolute-to-selective extinction, R$_V$, indicating a link between gas depletion and dust grain size. Extinction maps are derived from the resolved stellar photometry in the parallel imaging, which can be compared to FIR images from Herschel and Spitzer to estimate the emissivity of dust at LMC metallicity. The full METAL sample of depletions, UV extinction curves, and extinction maps will inform the abundance, size, composition, and optical properties of dust grains in the LMC, comprehensively improve our understanding of dust properties, and the accuracy with which dust-based gas masses, star formation rates and histories in nearby and high-redshift galaxies are estimated. This overview paper describes the goals, design, data reduction, and initial results of the METAL survey.
A key component of the baryon cycle in galaxies is the depletion of metals from the gas to the dust phase in the neutral ISM. The METAL (Metal Evolution, Transport and Abundance in the Large Magellanic Cloud) program on the Hubble Space Telescope acq
We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxys evolution (SAGE), the inter
Context. Bulge globular clusters (BGCs) are exceptional tracers of the formation and chemodynamical evolution of this oldest Galactic component. However, until now, observational difficulties have prevented us from taking full advantage of these powe
We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud
We observed an area of 10 deg^2 of the Large Magellanic Cloud using the Infrared Camera on board AKARI. The observations were carried out using five imaging filters (3, 7, 11, 15, and 24 micron) and a dispersion prism (2 -- 5 micron, $lambda / Deltal