ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of generalized fractional order gradient descent method

145   0   0.0 ( 0 )
 نشر من قبل Yiheng Wei
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper focuses on the convergence problem of the emerging fractional order gradient descent method, and proposes three solutions to overcome the problem. In fact, the general fractional gradient method cannot converge to the real extreme point of the target function, which critically hampers the application of this method. Because of the long memory characteristics of fractional derivative, fixed memory principle is a prior choice. Apart from the truncation of memory length, two new methods are developed to reach the convergence. The one is the truncation of the infinite series, and the other is the modification of the constant fractional order. Finally, six illustrative examples are performed to illustrate the effectiveness and practicability of proposed methods.

قيم البحث

اقرأ أيضاً

This paper proposes a fractional order gradient method for the backward propagation of convolutional neural networks. To overcome the problem that fractional order gradient method cannot converge to real extreme point, a simplified fractional order g radient method is designed based on Caputos definition. The parameters within layers are updated by the designed gradient method, but the propagations between layers still use integer order gradients, and thus the complicated derivatives of composite functions are avoided and the chain rule will be kept. By connecting every layers in series and adding loss functions, the proposed convolutional neural networks can be trained smoothly according to various tasks. Some practical experiments are carried out in order to demonstrate fast convergence, high accuracy and ability to escape local optimal point at last.
88 - Jie Chen , Ronny Luss 2018
Stochastic gradient descent (SGD), which dates back to the 1950s, is one of the most popular and effective approaches for performing stochastic optimization. Research on SGD resurged recently in machine learning for optimizing convex loss functions a nd training nonconvex deep neural networks. The theory assumes that one can easily compute an unbiased gradient estimator, which is usually the case due to the sample average nature of empirical risk minimization. There exist, however, many scenarios (e.g., graphs) where an unbiased estimator may be as expensive to compute as the full gradient because training examples are interconnected. Recently, Chen et al. (2018) proposed using a consistent gradient estimator as an economic alternative. Encouraged by empirical success, we show, in a general setting, that consistent estimators result in the same convergence behavior as do unbiased ones. Our analysis covers strongly convex, convex, and nonconvex objectives. We verify the results with illustrative experiments on synthetic and real-world data. This work opens several new research directions, including the development of more efficient SGD updates with consistent estimators and the design of efficient training algorithms for large-scale graphs.
117 - Yunwen Lei , Ting Hu , Guiying Li 2019
Stochastic gradient descent (SGD) is a popular and efficient method with wide applications in training deep neural nets and other nonconvex models. While the behavior of SGD is well understood in the convex learning setting, the existing theoretical results for SGD applied to nonconvex objective functions are far from mature. For example, existing results require to impose a nontrivial assumption on the uniform boundedness of gradients for all iterates encountered in the learning process, which is hard to verify in practical implementations. In this paper, we establish a rigorous theoretical foundation for SGD in nonconvex learning by showing that this boundedness assumption can be removed without affecting convergence rates. In particular, we establish sufficient conditions for almost sure convergence as well as optimal convergence rates for SGD applied to both general nonconvex objective functions and gradient-dominated objective functions. A linear convergence is further derived in the case with zero variances.
69 - Daniele Musso 2020
We propose to optimize neural networks with a uniformly-distributed random learning rate. The associated stochastic gradient descent algorithm can be approximated by continuous stochastic equations and analyzed within the Fokker-Planck formalism. In the small learning rate regime, the training process is characterized by an effective temperature which depends on the average learning rate, the mini-batch size and the momentum of the optimization algorithm. By comparing the random learning rate protocol with cyclic and constant protocols, we suggest that the random choice is generically the best strategy in the small learning rate regime, yielding better regularization without extra computational cost. We provide supporting evidence through experiments on both shallow, fully-connected and deep, convolutional neural networks for image classification on the MNIST and CIFAR10 datasets.
The need for fast and robust optimization algorithms are of critical importance in all areas of machine learning. This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm s performance, we study the existence, uniqueness and consistency of regret-optimal algorithms. By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics which we show is equivalent to performing dual-preconditioned gradient descent on the value function generated by its regret. Using these optimal dynamics, we provide bounds on their rates of convergence to solutions of convex optimization problems. Though closed-form optimal dynamics cannot be obtained in general, we present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret. Lastly, these are benchmarked against commonly used optimization algorithms to demonstrate their effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا