ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal magnification for streaked ultrafast electron diffraction and microscopy

65   0   0.0 ( 0 )
 نشر من قبل David Cesar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the frontiers of modern electron scattering instrumentation is improving temporal resolution in order to enable the observation of dynamical phenomena at their fundamental time-scales. We analyze how a radiofrequency cavity can be used as an electron longitudinal lens in order to produce a highly magnified temporal replica of an ultrafast process, and, in combination with a deflecting cavity, enable streaked electron images of optical-frequency phenomena. We present start-to-end simulations of an MeV electron beamline for two variations of this idea (a `magnifying-glass and a `point-projection configuration) showing the feasibility for an electron probe to achieve single shot 1.4 fs(rms) temporal resolution.



قيم البحث

اقرأ أيضاً

Ultrafast Electron Microscopy (UEM) has been demonstrated to be an effective table-top technique for imaging the temporally-evolving dynamics of matter with subparticle spatial resolution on the time scale of atomic motion. However, imaging the faste r motion of electron dynamics in real time has remained beyond reach. Here, we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated 30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity for efficiently probing the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses, attaining the desired temporal resolution in electron microscopy for establishing the Attomicroscopy to allow the imaging of electron motion in the act.
171 - Lingrong Zhao , Jun Wu , Zhe Wang 2021
We demonstrate a non-invasive time-sorting method for ultrafast electron diffraction (UED) experiments with radio-frequency (rf) compressed electron beams. We show that electron beam energy and arrival time at the sample after rf compression are stro ngly correlated such that the arrival time jitter may be corrected through measurement of the beam energy. The method requires minimal change to the infrastructure of most of the UED machines and is applicable to both keV and MeV UED. In our experiment with ~3 MeV beam, the timing jitter after rf compression is corrected with 35 fs root-mean-square (rms) accuracy, limited by the 3x10^-4 energy stability. For keV UED with high energy stability, sub-10 fs accuracy in time-sorting should be readily achievable. This time-sorting technique allows us to retrieve the 2.5 THz oscillation related to coherent A1g phonon in laser excited Bismuth film and extends the temporal resolution of UED to a regime far beyond the 100-200 fs rms jitter limitation.
We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM$_{110}$ mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures.
This paper presents the experimental realization of an ultrafast electron microscope operating at a repetition rate of 75 MHz based on a single compact resonant microwave cavity operating in dual mode. This elliptical cavity supports two orthogonal T M$_{110}$ modes with different resonance frequencies that are driven independently. The microwave signals used to drive the two cavity modes are generated from higher harmonics of the same Ti:Sapphire laser oscillator. Therefore the modes are accurately phase-locked, resulting in periodic transverse deflection of electrons described by a Lissajous pattern. By sending the periodically deflected beam through an aperture, ultrashort electron pulses are created at a repetition rate of 75 MHz. Electron pulses with $tau=(750pm10)$ fs pulse duration are created with only $(2.4pm0.1)$ W of microwave input power; with normalized rms emittances of $epsilon_{n,x}=(2.1pm0.2)$ pm rad and $epsilon_{n,y}=(1.3pm0.2)$ pm rad for a peak current of $I_p=(0.4pm0.1)$ nA. This corresponds to an rms normalized peak brightness of $B_{np,textrm{rms}}=(7pm1)times10^6$ A/m$^2$ sr V, equal to previous measurements for the continuous beam. In addition, the FWHM energy spread of $Delta U = (0.90pm0.05)$ eV is also unaffected by the dual mode cavity. This allows for ultrafast pump-probe experiments at the same spatial resolution of the original TEM in which a 75 MHz Ti:Sapphire oscillator can be used for exciting the sample. Moreover, the dual mode cavity can be used as a streak camera or time-of-flight EELS detector with a dynamic range $>10^4$.
In the quest for dynamic multimodal probing of a materials structure and functionality, it is critical to be able to quantify the chemical state on the atomic and nanoscale using element specific electronic and structurally sensitive tools such as el ectron energy loss spectroscopy (EELS). Ultrafast EELF, with combined energy, time, and spatial resolution in a transmission electron microscope, has recently enabled transformative studies of photo excited nanostructure evolution and mapping of evanescent electromagnetic fields. This article aims to describe the state of the art experimental techniques in this emerging field and its major uses and future applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا