ﻻ يوجد ملخص باللغة العربية
Rooted phylogenetic networks provide an explicit representation of the evolutionary history of a set $X$ of sampled species. In contrast to phylogenetic trees which show only speciation events, networks can also accommodate reticulate processes (for example, hybrid evolution, endosymbiosis, and lateral gene transfer). A major goal in systematic biology is to infer evolutionary relationships, and while phylogenetic trees can be uniquely determined from various simple combinatorial data on $X$, for networks the reconstruction question is much more subtle. Here we ask when can a network be uniquely reconstructed from its `ancestral profile (the number of paths from each ancestral vertex to each element in $X$). We show that reconstruction holds (even within the class of all networks) for a class of networks we call `orchard networks, and we provide a polynomial-time algorithm for reconstructing any orchard network from its ancestral profile. Our approach relies on establishing a structural theorem for orchard networks, which also provides for a fast (polynomial-time) algorithm to test if any given network is of orchard type. Since the class of orchard networks includes tree-sibling tree-consistent networks and tree-child networks, our result generalise reconstruction results from 2008 and 2009. Orchard networks allow for an unbounded number $k$ of reticulation vertices, in contrast to tree-sibling tree-consistent networks and tree-child networks for which $k$ is at most $2|X|-4$ and $|X|-1$, respectively.
Rooted phylogenetic networks provide a more complete representation of the ancestral relationship between species than phylogenetic trees when reticulate evolutionary processes are at play. One way to reconstruct a phylogenetic network is to consider
In the study of rooted phylogenetic networks, analyzing the set of rooted phylogenetic trees that are embedded in such a network is a recurring task. From an algorithmic viewpoint, this analysis almost always requires an exhaustive search of a partic
Tree-child networks, one of the prominent network classes in phylogenetics, have been introduced for the purpose of modeling reticulate evolution. Recently, the first author together with Gittenberger and Mansouri (2019) showed that the number ${rm T
In phylogenetic studies, biologists often wish to estimate the ancestral discrete character state at an interior vertex $v$ of an evolutionary tree $T$ from the states that are observed at the leaves of the tree. A simple and fast estimation method -
In previous work, we gave asymptotic counting results for the number of tree-child and normal networks with $k$ reticulation vertices and explicit exponential generating functions of the counting sequences for $k=1,2,3$. The purpose of this note is t