ﻻ يوجد ملخص باللغة العربية
Quantum simulation is an important way to study the Dirac particles in a general situation. Discrete quantum walk (DQW), is a powerful quantum simulation scheme, and implementable in well controllable table-top set-ups. We first identify that the conventional DQW cant exactly simulate Dirac Cellular Automaton (DCA), a discretized theory of free Dirac Hamiltonian (DH). We found some choice of coin parameters of the split-step (SS) DQW, a generalization of DQW can fully simulate single-particle DCA. Next we question whether the same SS-DQW can simulate dynamics of free Dirac particle with extra degrees of freedom like colors, flavors besides the spin or chirality. One such example is Neutrino oscillation. By moving from the U(2) coined SS-DQW to the U(6) coined SS-DQW we have simulated the exact probability profile of Neutrino flavor transitions. We further probe towards simulating single particle massive DH in presence of background potentials and space-time curvature. By using a SS-DQW with position-time dependent coin parameters, and we realize that it will give us an unbounded effective Hamiltonian, at the continuum limit of position-time. So we have introduced a modified version of SS-DQW which will produce a bounded effective Hamiltonian. This modified SS-DQW with U(2) coin operations produces single-particle massive DH in presence of abelian gauge potentials and space-time curvature. Introducing higher dimensional---U(N) coin operations in the modified SS-DQW we can include non-abelian potentials in the same DH. In order to simulate two-particle DH in presence of curved space-time and external potentials, we have used two particle modified SS-DQW, where the shift operations act separately on each particle, the coin operations which act simultaneously on both particles contain all kinds of interactions.
Conversion of vacuum fluctuations into real particles was first predicted by L. Parker considering an expanding universe, followed in S. Hawkings work on black hole radiation. Since their experimental observation is challenging, analogue systems have
Dirac particle represents a fundamental constituent of our nature. Simulation of Dirac particle dynamics by a controllable quantum system using quantum walks will allow us to investigate the non-classical nature of dynamics in its discrete form. In t
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to
Here we present neutrino oscillation in the frame-work of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters
The preparation of quantum systems and the execution of quantum information tasks between distant users are always affected by gravitational and relativistic effects. In this work, we quantitatively analyze how the curved space-time background of the