ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino nucleosynthesis: An overview

58   0   0.0 ( 0 )
 نشر من قبل Andre Sieverding
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrinos produced during a supernova explosion induce reactions on abundant nuclei in the outer stellar shells and contribute in this way to the synthesis of the elements in the Universe. This neutrino nucleosynthesis process has been identified as an important contributor to the origin of $^7$Li, $^{11}$B,$^{19}$F, $^{138}$La, and $^{180}$Ta, but also to the long-lived radionuclides $^{22}$Na and $^{26}$Al, which are both key isotopes for $gamma$-ray astronomy. The manuscript summarizes the recent progress achieved in simulations of neutrino nucleosynthesis.



قيم البحث

اقرأ أيضاً

We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M$_odot$ and 40 M$_odot$. We improve previous investigations i) by usi ng a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers $Z < 76 $ and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of $^7$Li, $^{11}$B, $^{138}$La, and $^{180}$Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M$_odot$, $^{19}$F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the $ u$ process. We also find that neutrino-induced reactions, either directly or indirectly by providing an enhanced abundance of light particles, noticeably contribute to the production of the radioactive nuclides $^{22}$Na and $^{26}$Al. Both nuclei are prime candidates for gamma-ray astronomy. Other prime targets, $^{44}$Ti and $^{60}$Fe, however, are insignificantly produced by neutrino-induced reactions. We also find a large increase in the production of the long-lived nuclei $^{92}$Nb and $^{98}$Tc due to charged-current neutrino capture.
468 - Else Pllumbi 2014
Neutrino oscillations, especially to light sterile states, can affect the nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 Msun electron-capture supernova, whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations both between active and active-sterile flavors. We also take into account the alpha-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution which depend in a subtle way on the relative radial positions of the sterile MSW resonances, of collective flavor transformations, and on the formation of alpha particles. For the adopted supernova progenitor, we find that neutrino oscillations, also to a sterile state with eV-mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and alpha-effect.
159 - D.V. Shetty , S.J. Yennello 2010
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dep endence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.
97 - G. Altarelli 2012
We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large $theta_{13}$, possible non maximal $theta_{23}$, approaching sensitivity on $delta_{CP}$) and their implications on m odels of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.
106 - R. Surman , G. C. McLaughlin , 2011
We examine the prospects for producing Nickel-56 from black hole accretion disks, by examining a range of steady state disk models. We focus on relatively slowly accreting disks in the range of 0.05 - 1 solar masses per second, as are thought to be a ppropriate for the central engines of long-duration gamma-ray bursts. We find that significant amounts of Nickel-56 are produced over a wide range of parameter space. We discuss the influence of entropy, outflow timescale and initial disk position on mass fraction of Nickel-56 which is produced. We keep careful track of the weak interactions to ensure reliable calculations of the electron fraction, and discuss the role of the neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا